Part I

Signal Processing and Detection
Contents

I Signal Processing and Detection

1 Fundamentals of Discrete Data Transmission

1.1 Discrete Data-Message Encoding and Decoding

- 1.1.1 The Vector-Symbol Channel Model
- 1.1.1.1 Vector-Symbol Communication Examples
- 1.1.1.2 Energy
- 1.1.2 Optimum Data Detection
- 1.1.2.1 The MAP Detector
- 1.1.2.2 The Maximum Likelihood (ML) Detector
- 1.1.3 Decision Regions
- 1.1.4 Optimum Average Error Probability Calculation
- 1.1.5 Irrelevant Components of the Channel Output
- 1.1.5.1 Reversibility
- 1.1.6 Optimum Bit-Error Probability and Log Likelihood Decoding
- 1.1.7 P_e Calculation and The Bhattacharyya Bound

1.2 Data Modulation and Demodulation for Continuous-Time Channels

- 1.2.1 Signal Waveform Representation by Vectors
- 1.2.2 Modulator Examples
- 1.2.3 Vector-Space Interpretation of the Modulated Waveforms
- 1.2.4 Demodulation
- 1.2.5 MIMO Channel Basics

1.3 The Additive White Gaussian Noise (AWGN) Channel

- 1.3.1 Continuous-Time AWGN Conversion to a Vector AWGN Channel
- 1.3.1.1 Optimum Detection with the AWGN Channel
- 1.3.1.2 General Receiver Implementation
- 1.3.1.3 Signal-to-Noise Ratio (SNR) Maximization with a Matched Filter
- 1.3.2 Error Probability for the AWGN Channel
- 1.3.2.1 AWGN Invariance to Rotation and Translation
- 1.3.2.2 Union Bounding
- 1.3.2.3 The Nearest Neighbor Union Bound
- 1.3.2.4 Alternative Performance Measures
- 1.3.2.5 Block Error-Rate Measures
- 1.3.3 General Classes of Constellations and Modulation

1.1 Discrete Data-Message Encoding and Decoding

- 1.1.1 The Vector-Symbol Channel Model
- 1.1.1.1 Vector-Symbol Communication Examples
- 1.1.1.2 Energy
- 1.1.2 Optimum Data Detection
- 1.1.2.1 The MAP Detector
- 1.1.2.2 The Maximum Likelihood (ML) Detector
- 1.1.3 Decision Regions
- 1.1.4 Optimum Average Error Probability Calculation
- 1.1.5 Irrelevant Components of the Channel Output
- 1.1.5.1 Reversibility
- 1.1.6 Optimum Bit-Error Probability and Log Likelihood Decoding
- 1.1.7 P_e Calculation and The Bhattacharyya Bound

1.2 Data Modulation and Demodulation for Continuous-Time Channels

- 1.2.1 Signal Waveform Representation by Vectors
- 1.2.2 Modulator Examples
- 1.2.3 Vector-Space Interpretation of the Modulated Waveforms
- 1.2.4 Demodulation
- 1.2.5 MIMO Channel Basics

1.3 The Additive White Gaussian Noise (AWGN) Channel

- 1.3.1 Continuous-Time AWGN Conversion to a Vector AWGN Channel
- 1.3.1.1 Optimum Detection with the AWGN Channel
- 1.3.1.2 General Receiver Implementation
- 1.3.1.3 Signal-to-Noise Ratio (SNR) Maximization with a Matched Filter
- 1.3.2 Error Probability for the AWGN Channel
- 1.3.2.1 AWGN Invariance to Rotation and Translation
- 1.3.2.2 Union Bounding
- 1.3.2.3 The Nearest Neighbor Union Bound
- 1.3.2.4 Alternative Performance Measures
- 1.3.2.5 Block Error-Rate Measures
- 1.3.3 General Classes of Constellations and Modulation
1.3.3.6 Orthogonal Constellations ... 66
1.3.3.6.1 Block Orthogonal ... 66
1.3.3.6.2 \(P_e \) Computation for Block Orthogonal 68
1.3.3.6.3 Simplex Constellation .. 69
1.3.3.6.4 Pulse Duration & Position Modulation 70
1.3.3.6.5 Biorthogonal Constellations .. 71
1.3.3.7 Circular Constellations - \(M \)-ary Phase Shift Keying 72
1.3.4 Rectangular (and Hexagonal) Signal Constellations 72
1.3.4.0.1 The Continuous Approximation .. 72
1.3.4.1 Pulse Amplitude Modulation (PAM) 74
1.3.4.2 Quadrature Amplitude Modulation (QAM) 76
1.3.4.2.1 The QAM Square Constellation 76
1.3.4.2.2 QAM Cross Constellations ... 81
1.3.4.2.3 Vestigial Sideband Modulation (VSB), CAP, and OQAM 83
1.3.4.2.4 Forney’s Gap .. 85
1.3.4.3 More Constellation Performance Measures 85
1.3.4.3.1 Coding Gain ... 85
1.3.4.3.2 Peak-to-Average Power Ratio (PAR) 87
1.3.5 Baseband Modulation .. 88
1.3.5.1 Passband Representations and Terminology 89
1.3.5.1.1 Passband Signal Equivalents ... 89
1.3.5.1.2 Frequency Spectrum of Analytic- and Baseband-Equivalent Sig-

1.3.5.1.3 Generation of the baseband equivalent 94
1.3.5.1.4 Passband Channels ... 94
1.3.5.1.5 Equivalent representations of the channel response 95
1.3.5.1.6 The equivalent views of channel input/output relations 95
1.3.5.2 Baseband-Equivalent AWGN Channel 97
1.3.5.2.1 Noise Scaling .. 98
1.3.5.2.2 Signal Scaling .. 99
1.3.5.3 Conversion to a baseband equivalent channel 101
1.3.5.3.1 Carrier demodulation for baseband-channel generation 101
1.3.5.3.2 Generating the baseband equivalent: some examples 102
1.3.5.3.3 Complex generalization of inner products and analysis 107
1.3.6 Passband Analysis for QAM alternatives 108
1.3.6.1 Passband VSB Analysis ... 108
1.3.6.2 Passband CAP Analysis .. 109
1.3.6.3 OQAM or “Staggered QAM” .. 110
1.3.6.4 The difference between complex and baseband equivalent channels 110
1.3.6.4.1 The complex filter ... 111
1.3.7 Additive Self-Correlated Noise ... 111
1.3.7.1 The Filtered (One-Shot) AWGN Channel 111
1.3.7.2 Optimum Detection with Self-Correlated Noise 113
1.3.7.2.1 The Whitening filter .. 114
1.3.7.2.2 The Vector Self-Correlated Gaussian Noise Channel 115
1.3.7.3 Performance of Suboptimal Detection with Self-Correlated Noise 117
1.4 Finite-Field Channels .. 119
1.4.1 Discrete Memoryless Channels ... 119
1.4.2 Symmetric DMCs ... 121
1.4.2.1 The Binary Symmetric Channel (BSC) 122
1.4.2.2 The Binary Erasure Channel (BEC) 122
1.4.2.3 The \(q \)-ary-DMC ... 123
1.5 Linear and Non-Linear Single-Message Channel Models 124
1.6 Time-Varying Statistical Channels .. 125
1.7 Disguised Channels ... 126
Chapter 1 Exercises .. 128

A Gram-Schmidt Orthonormalization Procedure .. 160

B The Q Function ... 161

C Hilbert Transform .. 164
 C.1 Examples .. 164
 C.2 Inverse Hilbert .. 165
 C.3 Hilbert Transform of Passband Signals 165

D Passband Processes ... 166
 D.1 Hilbert Transform .. 166
 D.2 Quadrature Decomposition .. 167

E Random Processes (By Dr. James Aslanis) .. 169
 E.1 Stationarity .. 170
 E.2 Linear Systems ... 173

4
Chapter 1

Fundamentals of Discrete Data Transmission

This chapter introduces this textbook’s foundation for digital data transmission that links basic mathematical concepts in probability theory, discrete and continuous fields, and basic optimum-decision concepts. The consequent foundational understanding readies the designer to comprehend many simple wireline and wireless transmission systems, while also enabling the designer to progress to increasingly sophisticated methods in later chapters. Simple vector-symbol representation of transmitters and receivers with definitions of optima and corresponding performance analysis basics appear here. These basics allow calculation of data rates achieved, corresponding to defined quality measures like error probability, and to a common framework for system comparisons using nearest-neighbor and minimum-distance concepts. This chapter concludes with more than 50 exercises that help the reader examine these foundational basics and illustrate the topics’ utility in a number of both practical designs and/or curious challenges.

Figure 1.1 illustrates discrete data transmission, which is the transmission of one message from a finite set of messages through a communication channel. A message sender at the transmitter communicates with a message recipient at the receiver. The sender selects one message from the finite set, and the transmitter sends a corresponding transmit symbol that uniquely represents this message through the communication channel. The receiver decides the message sent by observing the received symbol, which may not be the same as the transmitted symbol, and passes that decided
This chapter concentrates on optimal detection for a single message transmission through the channel\(^1\). Such single-message analysis is often called **one-shot** analysis. When a single message is sent, Section 1.1’s **encoder** maps that message to the transmit symbol.

Similarly with a single message, Section 1.1’s **detector** is the receiver device that makes the receiver’s decision. Section 1.1 also develops optimum detection that minimizes the probability of an erroneous receiver decision on which message was transmitted. A decoder maps the decision into the corresponding message. Chapter 2 addresses encoders that expand multiple successive coordinated symbol transmissions, while Chapter 3 addresses channel-induced inter-symbol interference.

A single bit, a digital sequence of bits, bytes (8-bit groups), or other groupings of a finite number of bits represent the message to be sent. More bits means a larger finite set of possible choices for the single message sent. The different bit combinations each uniquely represent individually the distinct discrete messages that pass to the channel. The bits themselves are usually not compatible with direct message transmission through most communication channels. Thus the encoder converts the messages’ bits into appropriate **symbols** that the transmitter can send through the channel. The symbols depend on the permissible types of channel inputs, which are typically modeled as within a field or vector space. Section 1.1 models the channel with a conditional probability distribution on received symbols for each given transmitted symbol value.

The channel distorts the transmitted symbols both deterministically and randomly to produce the received symbols. Because the received symbol will usually not exactly equal the transmitted symbol, Section 1.1 develops the criteria for the detector that makes a optimum decision based on the observed received symbol. Optimal decisions minimize the probability of message/symbol decision error. The transmitted symbols have probabilities equal to the probabilities of the messages that they represent. The optimal decision will depend only on the probabilistic model for the channel and the channel-input-message’s probability distribution. The general optimal decision specializes in many later sections’ important practical cases of interest. This probabilistic approach allows conceptual extension beyond data “transmission” to all types of recognition, detection, and matching problems that often go under more exotic modern names like “machine learning,” “search engine,” and/or “facial recognition,” as in Section 1.7 on disguised channels. A good part of life and education tries to learn, infer, or understand/receive some communication or information (as well as to transmit or store it so it is more easily understood by another), and this chapter provides basics that apply to all these basic communication areas.

Section 1.2 then expands the transmitter model to include **modulation**. A modulator converts the encoder-output symbols into continuous-time signals for transmission through a continuous-time channel. This chapter develops a theory of modulation and corresponding demodulation that links to Section 2.1’s discrete vector representation for any set of continuous-time signals. This “vector-channel” approach was pioneered for educational purposes by Jack Wozencraft and Irwin Jacobs in Chapter 4 of their classic text \[1\] (Chapter 4). In fact, the first two sections of this chapter closely parallel their development (with some updating and rearrangement), before diverging in Sections 1.3 – 1.7 and in the remainder of this text. Section 1.2’s last subsection introduces the **multiple-input multiple-output (MIMO)** modulation that may generate multiple continuous-time signals for coordinated transmission through separate antennas’ or wires’ channels.

Section 1.3 investigates continuous-time channels, particularly the most common case of the additive Gaussian-noise channel, which maps easily into Section 1.1’s discrete-time vector model without loss of generality. Section 1.3 also develops simpler widely applicable methods to calculate and estimate average error probability, \(P_e\), for a vector channel with **Additive White Gaussian Noise (AWGN)**, particularly introducing and using nearest-neighbor and minimum-distance concepts. Section 1.3 also discusses several popular modulation formats and determine bounds for their error probability with the AWGN, including signals derived from rectangular lattices, a popular and practical signal-transmission method. Section 1.3 also addresses the extension to carrier-modulated signals. Section 1.4 progresses to finite-field channels where the inputs and outputs belong to discrete finite sets and the concept of noise necessarily becomes discrete and part of the channel’s general conditional-probability model.

\(^1\)Dependencies between successive message transmissions can be important also, but the study of such inter-message dependency is deferred to later chapters.
Section 1.5 introduces linear and nonlinear one-shot/matrix channels. Later chapters revisit these models for increasingly sophisticated transmission. Section 1.6 then models the additive-noise channel's gain as random, which allows an average analysis of time-varying channels that is useful for wireless data transmission.
1.1 Discrete Data-Message Encoding and Decoding

This section mathematically and statistically models the basic transmitter, channel, and receiver through
symbol vectors. Some results here will correspond to the transmitted symbol and corresponding received
symbol being N-dimensional real-valued vectors, while Sections 1.3 and 1.4 will expand to complex vec-
tors and other possible finite fields for the symbol values. Of importance is the study of the optimal
detector. The optimal detector decides which of Figure 1.2’s discrete symbol vectors $x_i, i = 0, ..., M - 1$
was most likely transmitted based on the single observation of Figure 1.2’s received symbol vector y.
Section 1.2 introduces MIMO (multiple-input-multiple-output) vector channels that fit precisely
also into this section’s framework, but extend the vector dimensionality index to correspond to simulta-
neous transmission of symbols over L_x multiple-input, parallel, N-dimensional channels to L_y multiple
received symbols that may each also be N-dimensional. The transmitted symbols may be viewed in
aggregate then as a single transmitted symbol (chosen from a larger set of possible symbols over a larger
dimensionality), and similarly the received symbols can also be viewed as single received symbol, also of
larger dimensionality.

1.1.1 The Vector-Symbol Channel Model

The vector-symbol channel model appears in Figure 1.2. A message from the set of M possible
messages $m_i, i = 0, ..., M - 1$ is sent every T seconds, where T is the symbol period for the discrete
data transmission system. Thus, messages are sent at the symbol rate of $1/T$ messages per second.
The number of messages that can be sent is often measured in bits so that $b = \log_2(M)$ bits are sent
every symbol period. Thus, the data rate is $R = b/T$ bits per second. The message is often considered
to be a real integer equal to the index i, in which case the message is abbreviated as m with possible
values $m \in \{0, ...M - 1\}$. This chapter’s one-shot analysis will focus attention on a single symbol period
over time $t \in [0, T]$.

![Figure 1.2: Vector channel model.](image)

The encoder formats the messages for transmission over the vector-symbol channel by uniquely
mapping each message m_i into its specific corresponding symbol vector x_i, typically an N-dimensional
real data symbol chosen from a signal constellation C that is the set of $|C| \geq M$ distinct points
$C = \{x_i, i = 0, ..., |C| - 1\}$. In this chapter $|C| = M$, but it is possible in Chapter 2’s coded systems
for the signal constellation to have more possible points than there are messages. The detector decides
which message \hat{m}_i was sent from among the set of M possible messages $\{m_i, i = 0, ..., M - 1\}$ that
could have been transmitted over the vector channel. In the vector channel, x is a random vector, with
discrete probability distribution $p_x(i), i = 0, ..., |C| - 1$.

Definition 1.1.1 (Symbol Transmission Definition Summary) Table 1.1 summarizes
the symbol-related definitions:
Table 1.1: Table of transmitted-symbol quantities’ definitions.

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M = 2^b)</td>
<td>The number of messages, corresponding to (b) information bits</td>
</tr>
<tr>
<td>(T)</td>
<td>The symbol period: (1/T) is the symbol rate</td>
</tr>
<tr>
<td>(R = \frac{b}{T})</td>
<td>The data rate.</td>
</tr>
<tr>
<td>(x)</td>
<td>The transmitted symbol value (typically a real or complex vector)</td>
</tr>
<tr>
<td>(C)</td>
<td>The constellation consisting of all possible symbol values { (x_i), (i = 0, ...,</td>
</tr>
<tr>
<td>(p_m(i))</td>
<td>The message’s probability distribution, (i = 0, ..., M - 1)</td>
</tr>
<tr>
<td>(p_x(i))</td>
<td>The symbol value’s probability distribution</td>
</tr>
</tbody>
</table>

1.1.1.1 Vector-Symbol Communication Examples

This subsection tries both to provide some examples and to illustrate how many problems today viewed in computer science and other fields are often fundamentally discrete data transmission examples. Such view then motivates discrete data transmission as a fundamental core discipline through many fields of signal processing, imaging, recognition, movement or object detection, and even search engines as special cases.

EXAMPLE 1.1.1 (Light-Pulse Bit Transmission)

Figure 1.3 illustrates basic fiber-optic transmission conceptually. Simple fiber-optic transmission systems transmit bits as light pulses through a fiber\(^2\). Thus, a light pulse’s presence indicates message “1,” and its absence indicates message “0.” Figure 1.3’s encoder “gate” passes light to the fiber waveguide when the message input is \(m = 1 \) and blocks light when \(m = 0 \). Figure 1.3’s single light pulse corresponds to a single “1” between a previous and a succeeding “0.” For the simple binary case, the index of \(i \) essentially becomes \(m \) to simplify notation, and the inputs will be equally likely with probability \(p_m = 1/2 \). Figure 1.3 receiver sensor accepts the received light pulse.

The laser physics and semiconductor technologies supporting such transmission evolve with time so that very narrow pulses are possible, allowing narrow values for the symbol period \(T \). The \(x_1 \) transmit-symbol value will be some optical intensity level \(X_{\text{max}} > 0 \) launched into the fiber, while \(x_0 \) will be a lower (hopefully zero, so \(x_0 = 0 \)) intensity level. A corresponding optical device senses the received-symbol value \(y \). This \(y \) value may not fully represent the

\(^2\)Typical laser fiber-transmission wavelengths are 1.490 \(\mu \)m (201 THz) and 1.310 \(\mu \)m (229 THz), perhaps one for each transmission direction. Such a pulse-energy/light-detection system has the name **non-coherent**. **Coherent** optical receivers phase-lock (see Chapter 6) to the laser frequency while non-coherent essentially ignore the carrier frequency and sense only energy without regard to phase. This example describes only the simpler non-coherent.
optical energy because that energy attenuates in traversing the fiber. The receive sensor also has imperfections that introduce additive noise n. These imperfections’ energy levels increase relative to the optical energy as T narrows. Thus

$$y = a \cdot x + n \ ; \ 0 < a < 1 .$$

While more narrow T means higher data rate $R = 1/T$, it also increases the risk that the relatively larger noise component will confuse the light sensor. A longer fiber channel will also increase this risk because that increases the light pulse’s attenuation. The detector provides the output \hat{m} with as much reliability as possible. That is specifically an output of 1 when optical energy is sensed and 0 otherwise in each symbol period.

Figure 1.3 also represents this entire system as an overlay to Figure 1.2’s generic functions. The designer must obtain the channel’s probability distribution $p_{y|x}$ by measurement or analysis prior to analysis of the system’s performance. In this additive noise case, $p_{y|x} = p_n$, so the noise’s distribution determines the channel. Since the fiber has attenuation a, the channel is $p_{y|x} = p_n \left(\frac{x-x}{a} \right)$ with the value $x \in \{0, X_{max}\}$.

While Example 1.1.1 almost directly aligns with intuition, many common computing and engineering problems are also basic communication problems as the next example illustrates.

EXAMPLE 1.1.2 (Facial recognition is data transmission)

Figure 1.4 illustrates facial recognition as discrete data transmission. The message set contains all the possible faces that a digital camera’s photograph might capture. This set may be quite large. Eight faces appear, but the set could be larger or smaller; perhaps as large as M being the number of earthly humans or as small as simply $M = 2$ images that might correspond only to if an object is present or absent from a constant background. Photograph dimensionality is usually quite large. $N = 4e6$ is shown, but this number could vary with the camera’s resolution. Typically the dimensions correspond each to “pixels” that a digital camera captures in a two-dimensional grid, for instance $N = 2280 \times 1640$. Each pixel itself may have a few dimensional components (like red, green, and blue intensities) that are real numbers. Together these pixels form a large symbol vector for each possible face.
Figure 1.4: Facial recognition is data transmission.

The encoder is tacit, effectively implied by light falling on one of the possible faces causing it to be encoded into the reflected color intensities. The digital camera is part of the channel that converts that light into the pixel’s intensity numbers. Depending on the aperture and distance, the channel output photographed face may be turned or scaled relative to the stored facial image. Thus, the possible message set may need to expand by various scalings and turnings so that there are sufficiently many message-set images to cover the population of recognizable people. The facial-recognition server attempts to use knowledge of the channel \(p_{y/x} \) that provides for every possible camera-photo-output received-symbol vector \(y \) its probability given each and every possible transmitted-symbol vector \(x \) (the stored photos). Of course, as in all data-transmission systems, the input message set is known to the detector/receiver as well as the transmitter. Association of a set of a sufficiently large photo message-set with each and every individual is actually a dual of data transmission, often called data compression. Design of reasonable message sets in general, and would certainly be needed for practical facial recognition beyond this example, is more generally known as ‘coding.’ Choice of good codes can simplify the detection problem enormously while allowing reliably message transmission.

A third example translates position to message.

EXAMPLE 1.1.3 (Distance and movement estimation as data transmission)

Simplest radar\(^3\) and lidar\(^4\) systems measure the delay time for a pulse or “ping” reflection to return, then divide the delay time by twice the speed of light to estimate the reflecting object’s distance, as in Figure 1.5. Successive time measurements may be used to estimate speed of movement also as \(\frac{d_2-d_1}{t_2-t_1} \) where \(t_1 \) and \(t_2 \) are the successive measurement times for

\(^3\)RAdio Detection And Ranging (RADAR) uses sinusoidal energy bursts at “radio” frequencies between 3 MHz (100m wavelength) to 300 GHz (1mm wavelength).

\(^4\)LIght Detection And Ranging (LIDAR), which is similar to radar but at higher frequencies “light” frequencies from 30 THz (10\(\mu\)m wavelength) to 1200 THz (250nm wavelength)
d_1 and d_2, respectively. Figure 1.5 shows only one distance measurement. Radar systems\(^5\) lower-frequencies can traverse longer distances with less attenuation than can lidar systems\(^6\). However, lidar’s smaller wavelengths allow smaller objects to be identified and can\(^6\) provide a more accurate “3D” mapping of the object.

Figure 1.5: Self-driving lidar uses data transmission.

Figure 1.5 simplifies both these systems for distance estimation of a driver-less car approaching a stop sign. The messages corresponding to a quantization of distance between the car and the stop sign, with each message index i corresponding to a distance. Figure 1.5 shows $M = 10$ distances from 10 meters to 100 meters. The receiver, which is in the same location (on the car) as the transmitter, detects the reflected pulse’s delay τ and converts that into a distance \hat{m}_i, or effectively deciding one of the distances/messages.

Figure 1.5 shows only one object, but of course there could be multiple reflectors, in which case the previous example’s image recognition could be a first problem solved by a camera system collaborating with the distance estimation. Both together, or either by itself, are basic data transmission problems.

The next example further expands the perspective on data-transmission applicability:

EXAMPLE 1.1.4 (El Goog search engine is data transmission/detection)

Yes, a search engine is a receiver/detector. The message set $\{m_0, ..., m_M\}$ may have M as large as all the world’s URL’s\(^7\). The searcher types the channel output “Stanford” that corresponds to their own brain and the keyboard attempting to approximate what they seek. What they seek is the web-page or information m_i that is URL www.stanford.edu

\(^5\)Generally speaking, the lower the frequency, the lower the attenuation so 3 MHz travels much further than 30 THz.

\(^6\)When the lidar source moves for successive measurements or has multiple antennas participating, the known transmit positions and corresponding reflections can map a small stationary object’s shape or equivalent be used to create a multi-dimensional image reflection.

\(^7\)This may not be a “large” number for transmission engineers. Typical wireless codes’ decoders actually search more possibilities, but the code/symbols use structure, see Chapter 2, that allows search-complexity reduction.
The search engine’s detector models the channel-describing conditional probabilities for possible typed queries (the channel outputs, a vector of values corresponding to perhaps ASCII characters), \(y \), given what the searcher really might have wanted, \(x \). Search engines estimate this set of conditional probabilities by observing users’ page-hit frequencies in going from one web page to another. The matrix formed is a probability matrix, for whose largest eigenvalue’s corresponding eigenvector is the channel conditional-probability distribution that the detector subsequently uses. The calculation of the eigenvector is updated often, typically with each query and results. This distribution’s highest probability for the specific \(y \) value is the displayed top-line result (ignoring paid advertisements). This search is the “PageRank” algorithm (originally conceived and patented by Stanford graduate-student communications engineers L. Page and S. Brin). Other next-best, and next-to-next best, possible decodings are also often displayed in order. This multi-decision display is a form of “soft decoding or information” that appears in later chapters and in Subsection 1.1.6’s discussion of log-likelihood ratios.

Figure 1.6: Search engine is data transmission.

1.1.1.2 Energy

An important concept for a real-valued signal constellation is its average energy:

Definition 1.1.2 (Average Energy) A signal constellation’s average energy is

\[
\mathcal{E}_X \triangleq E \left[|x|^2 \right] = \sum_{i=0}^{[C] - 1} |x_i|^2 \cdot p_X(i),
\]

\(8\)Electrical engineers may note power (and therefore energy) necessarily are also a function of line/antenna impedance. That impedance’s square root is presumed absorbed into the symbol’s value in cases where the symbol is viewed as a voltage level. This scaling would also be implied for received symbols.
where \(|\|x_i\|^2\) is the squared-length of the vector \(x_i\), \(|\|x_i\|^2\) \(\triangleq \sum_{n=1}^{N} x_{in}^2\). “E” denotes expected or mean value. The average energy is also closely related to the concept of average power, which is

\[
P_x \triangleq \frac{\mathcal{E}_x}{T},
\]

corresponding to the amount of energy per symbol period.

In the same symbol period, the transmitted symbol vector \(x\) corresponds to a received symbol vector \(y\), which is also an \(N\)-dimensional real vector. The received symbol’s conditional probability (given the input symbol), \(p_{y|x}\), completely models the discrete data channel. The detector then translates the received symbol vector \(y\) into a decision on which symbol \(\hat{x} \in \{x_0, ..., x_{M-1}\}\) was transmitted. A decoder (which is part of the decision device) reverses the encoder process and converts the detector output \(\hat{x}\) into the message corresponding to the decision \(\hat{m}\).

The particular message symbol vector corresponding to \(m_i\) is \(x_i\) and has \(n^{th}\) component \(x_{in}\). The \(n^{th}\) component of \(y\) is denoted \(y_n\), \(n = 1, ..., N\). The random received symbol vector \(y\) may have a continuous probability density or a discrete probability distribution \(p_y(v)\), where \(v\) is a dummy variable spanning all the possible \(N\)-dimensional vector values for \(y\). The received symbol’s distribution is a function of the transmit-symbol and channel-transition-probability distributions:

\[
p_y(v) = \sum_{i=0}^{|C|-1} p_{y|x}(v, i) \cdot p_x(i).
\]

(1.3)

The received symbol’s average energy is

\[
\mathcal{E}_y = \sum_v \|v\|^2 \cdot p_y(v).
\]

(1.4)

An integral replaces the sum in (1.3) and (1.4) for the case of a continuous density function \(p_y(v)\). As an example, consider the simple additive noise channel \(y = x + n\). In this case \(p_y|x = p_n(y-x)\), where \(p_n(\bullet)\) is the noise probability distribution, when \(n\) is independent of the input \(x\).

1.1.2 Optimum Data Detection

For Figure 1.2’s vector channel, the error probability is defined as the probability that the decoded message \(\hat{m}\) is not equal to the transmitted message:

Definition 1.1.3 (Error Probability) The Error Probability is

\[
P_e \triangleq P\{\hat{m} \neq m\}.
\]

(1.5)

The corresponding probability of being correct is therefore

\[
P_c = 1 - P_e = 1 - P\{\hat{m} \neq m\} = P\{\hat{m} = m\}.
\]

(1.6)

The optimum data detector chooses \(\hat{m}\) to minimize \(P_e\), or equivalently, to maximize \(P_c\). The probability of being correct is a function of the particular transmitted message, \(m_i\).

9Section 1.2 will address the transformation of \(y(t) \rightarrow y\) for continuous-time channels.

10The replacement of a continuous probability distribution function by a discrete probability distribution function (sometimes called a density mass function) is, in strictest mathematical terms, not advisable; however, we do so here, as this particular substitution prevents a preponderance of additional notation, and it has long been conventional in the data transmission literature. The reader is thus forewarned to keep the continuous or discrete nature of the probability density in mind in the analysis of any particular vector channel.
1.1.2.1 The MAP Detector

The probability of a correct decision $\hat{m} = m_i$, given the specific channel output vector $y = v$, is

$$P_{c}(\hat{m} = m_i, y = v) = p_{m/y}(m_i, v) \cdot p_{y}(v) = p_{x/y}(x_i, v) \cdot p_{y}(v) = \frac{p_{x/y}(x_i)}{p_{y}(v)} \cdot p_{x}(x_i).$$

Thus the optimum decision device observes the particular received symbol $y = v$ and, as a function of that symbol, chooses an $\hat{m} = m_i, i = 0, ..., M - 1$ that maximizes the probability of a correct decision in (1.7). This quantity $p_{m/y}(i, v)$ is referred to as the \textit{a posteriori} probability for the vector channel. Summing (discrete v components, or equivalently integrating when continuous v) over all v values, $P_{m/y}(i, v) \cdot p_{y}(v)$ yields P_c, which is maximized overall then too (since $p_y(v) \geq 0$). P_c is then minimized. Thus, the optimum detector for Figure 1.2’s vector channel is the Maximum \textit{a Posteriori} detector:

Theorem 1.1.1 (MAP Detector) The Maximum \textit{a Posteriori} (MAP) Detector that chooses the message index i to maximize the \textit{a posteriori} probability $p_{m/y}(i, |v)$ given a received symbol $y = v$ minimizes the error probability P_c.

Proof: See the above paragraph. QED.

Subsection 1.1.4 describes the calculation of the corresponding optimum average error probability.

The MAP detector thus simply chooses the index i with the highest conditional probability $p_{m/y}(i|v)$. When m and x are in 1-to-1 correspondence (as always in this chapter), then $|C| = M$ and then $p_{x/y}(i, v) = p_{m/y}(i, v)$ and $p_{x}(i) = p_{m}(i)$. It is often convenient to represent the message by x when this is true. For every possible received vector y, the designer of the detector can calculate the corresponding best index i, which depends on the input distribution $p_{x}(i)$.

Thus, Rule 1.1.1 below summarizes the following MAP detector rule in terms of the known probability densities of the channel ($p_{y/x}$) and of the input vector (p_{x}):

Rule 1.1.1 (MAP Detection Rule)

$$\hat{m} \Rightarrow m_i \text{ if } p_{y|m}(v, i) \cdot p_{m}(i) \geq p_{y|m}(v, j) \cdot p_{m}(j) \text{ } \forall \text{ } j \neq i$$

If equality holds in (1.8), then the decision can be assigned to either message m_i or m_j without changing the minimized error probability.

1.1.2.2 The Maximum Likelihood (ML) Detector

If all transmitted messages are equally probable, that is if

$$p_{m}(i) = \frac{1}{M} \text{ } \forall \text{ } i = 0, ..., M - 1,$$

then the MAP Detection Rule becomes the Maximum Likelihood Detection Rule:

Rule 1.1.2 (ML Detection Rule)

$$\hat{m} \Rightarrow m_i \text{ if } p_{y|m}(v, i) \geq p_{y|m}(v, j) \text{ } \forall \text{ } j \neq i.$$

If equality holds in (1.10), then the decision can be assigned to either message m_i or m_j without changing the error probability.

11The more general form of this identity is called “Bayes Theorem”, [2].
As with the MAP detector, the ML detector also chooses an index i for each possible received vector $y = v$, but this index now only depends on the channel transition probabilities and is independent of the input distribution (by assumption). The ML detector essentially cancels the $1/M$ factor on both sides of (1.8) to get (1.10). This type of detector only minimizes P_e when the input data messages have equal probability of occurrence. As this requirement is often met in practice, ML detection is often used. Even when the input distribution is not uniform, ML detection is still often employed as a detection rule, because the input distribution may be unknown and thus assumed to be uniform. The Minimax Theorem sometimes justifies this uniform assumption:

Theorem 1.1.2 (Minimax Theorem) The ML detector minimizes the maximum possible average error probability when the input distribution is unknown if the conditional ML error probability $P_{e,ML/m=m_i}$ is independent of i.

Proof: First, if $P_{e,ML/i}$ is independent of i, then

$$P_{e,ML} = \sum_{i=0}^{M-1} p_x(i) \cdot P_{e,ML/i}$$

$$= P_{e,ML/i}$$

And so,

$$\max_{\{p_x\}} P_{e,ML} = \max_{\{p_x\}} \sum_{i=0}^{M-1} p_x(i) \cdot P_{e,ML/i}$$

$$= P_{e,ML} \sum_{i=0}^{M-1} p_x(i)$$

$$= P_{e,ML}$$

(1.11)

If R is any receiver other than the ML receiver, then

$$\max_{\{p_x\}} P_{e,R} = \max_{\{p_x\}} \sum_{i=0}^{M-1} p_x(i) \cdot P_{e,R/i}$$

$$\geq \sum_{i=0}^{M-1} \frac{1}{M} P_{e,R/i} \text{ (because } \max_{\{p_x\}} \{P_{e,R} \geq P_{e,R/i} \} \text{ for given } \{p_x\}\text{, specifically uniform)}$$

$$\geq \sum_{i=0}^{M-1} \frac{1}{M} P_{e,ML/i} \text{ (because the ML minimizes } P_e \text{ when } p_x(i) = \frac{1}{M} \text{ for } i = 0, \ldots, M-1)$$

$$= P_{e,ML}$$

So,

$$\max_{\{p_x\}} P_{e,R} \geq P_{e,ML}$$

$$= \max_{\{p_x\}} P_{e,ML} \text{ from (1.11)}$$

Thus, the ML receiver minimizes the maximum P_e over all possible receivers. QED.

The symmetry condition imposed by the Minimax Theorem is not always satisfied in practical situations; but the likelihood of an application where both the inputs are nonuniform in distribution and the ML conditional error probabilities are not symmetric is rare. Thus, ML receivers have come to be of nearly ubiquitous use in place of MAP receivers when detecting symbols. If the input probability distribution is not uniform, compression methods can be used to reduce the sender’s bit rate so that p_x appears uniform at the new lower data rate; however such compression is beyond this text’s scope.
1.1.3 Decision Regions

In the case of either the MAP Rule in (1.8) or the ML Rule in (1.10), each and every possible value for the channel output y maps into one of the M possible transmitted messages. Thus, the vector space (or more generally the field of values for the transmitted symbol values) for y is partitioned into M regions corresponding to the M possible decisions. Simple communication systems have well-defined boundaries (to be shown later), so the decision regions often coincide with intuition. Nevertheless, in some well-designed communications systems, the decoding function and the regions can be more difficult to visualize.

Definition 1.1.4 (Decision Region) The decision region using a MAP detector for each message m_i, $i = 0, ..., M - 1$ is defined as

$$D_i \triangleq \{v \mid p_{y/m}(v, i) \cdot p_m(i) \geq p_{y/m}(v, j) \cdot p_m(j) \quad \forall \ j \neq i \}.$$ \hspace{1cm} (1.12)

With uniformly distributed input messages, the decision regions reduce to

$$D_i \triangleq \{v \mid p_{y/m}(v, i) \geq p_{y/m}(v, j) \quad \forall \ j \neq i \}.$$ \hspace{1cm} (1.13)

![Figure 1.7: Decision regions.](image)

In Figure 1.7, each of the four different two-dimensional transmitted vectors x_i (corresponding to the messages m_i) has a surrounding decision region in which any received value for $y = v$ is mapped to the message m_i. In general, the decision regions need not be connected, and although such situations are rare in practice, they can occur (see Problem 1.12). Section 1.3 illustrates several example AWGN decision regions.

1.1.4 Optimum Average Error Probability Calculation

The probability of a correct decision, P_c, in Equation (1.7) is for a specific value of m_i. MAP-detector use corresponds to a specific (optimum, maximum) probability of correct decision, and corresponding minimum P_e for those values of $v \in D_i$, and so can also be rewritten

$$P_c(\hat{m} = m_i, \ y = v \in D_i) = P_{y=v/m=m_i}(v \in D_i/m_i) \cdot p_{m_i}.$$ \hspace{1cm} (1.14)
The average error probability for a detector $\hat{m} = m_i$ with a optimum-decision-region (or really any decision region corresponding to the a specific) rule D_i and corresponding $P_{y|m=m_i}(v|m_i)$ would then be

$$P_{e,max} \triangleq E[P_e] = \sum_{i=0}^{M-1} \left\{ \sum_{v \in D_i} P_{y|m=m_i}(v|m_i) \right\} \cdot p_{m_i} .$$

(1.15)

Thus the minimum average P_e for the MAP detector can be computed as

$$P_{e,min} \triangleq 1 - P_{e,max} = 1 - \sum_{i=0}^{M-1} \left\{ \sum_{v \in D_i} p_{y|m=m_i}(v|m_i) \right\} \cdot p_{m_i} .$$

(1.16)

Several examples of (1.16)’s computation will occur for specific channels later in this chapter. Often in specific cases, the double sum/integration can be tightly bounded and simplified to a simple expressing involving the minimum separation between transmitted symbols and the average number of nearest neighboring transmitted symbols.

1.1.5 Irrelevant Components of the Channel Output

The discrete channel-output vector y may contain information that does not help determine which of the M messages has been transmitted. These irrelevant components may be discarded without loss of performance, i.e. the input detected and the associated error probability remain unchanged. The received symbol y can be separated into two sets of dimensions, those that carry useful information y_1 and those that do not carry useful information y_2. That is,

$$y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} .$$

(1.17)

Theorem 1.1.3 summarizes the condition on y_2 that guarantees irrelevance [1]:

Theorem 1.1.3 (Theorem on Irrelevance) If

$$p_{x|(y_1,y_2)} = p_{x|y_1}$$

(1.18)

or equivalently if the channel-related probability distribution

$$p_{y_2|(y_1,x)} = p_{y_2|y_1}$$

(1.19)

then y_2 is not needed in the optimum receiver, that is, y_2 is irrelevant.

Proof: For a MAP receiver, then clearly the value of y_2 does not affect the maximization of $p_{x|(y_1,y_2)}$ if $p_{x|(y_1,y_2)} = p_{x|y_1}$ and thus y_2 is irrelevant to the optimum receiver’s decision. Equation (1.18) can be written as

$$\frac{p(x,y_1,y_2)}{p(y_1,y_2)} = \frac{p(x,y_1)}{p(y_1)}$$

(1.20)

or equivalently via “cross multiplication”

$$\frac{p(x,y_1,y_2)}{p(x,y_1)} = \frac{p(y_1,y_2)}{p(y_1)} ,$$

(1.21)

which is the same as (1.19). QED.

The reverse of the theorem of irrelevance is not necessarily true, as can be shown by counterexamples. Two examples (due to Wozencraft and Jacobs, [1]) reinforce the concept of irrelevance. In these examples, the two noise signals n_1 and n_2 are independent and the input is uniformly distributed.

18
EXAMPLE 1.1.5 (Extra Irrelevant Noise) Suppose y_1 is the noisy channel output shown in Figure 1.8.

![Diagram of noise and signal transmission](image)

y_2 is irrelevant

Figure 1.8: Extra irrelevant noise.

In the first example on the Figure 1.8’s left, $p_{y_2 | y_1, x} = p_{n_2} = p_{y_2 | y_1}$, thus satisfying the condition for y_2 to be ignored, as might be obvious upon casual inspection. The extra independent noise signal n_2 tells the receiver nothing given y_1 about the transmitted message x. In the second example on Figure 1.8’s right, the irrelevance of y_2 given y_1 is not quite as obvious as the signal is present in both the received channel output components. Nevertheless, $p_{y_2 | y_1, x} = p_{n_2} (v_2 - v_1) = p_{y_2 | y_1}$, so y_2 can be ignored.

In some other cases the output component y_2 should not be discarded. A classic example is the following case of “noise cancelation”:

EXAMPLE 1.1.6 (Noise Cancelation) Suppose y_1 is the noisy channel output shown in Figure 1.9

![Diagram of noise cancelation](image)

while y_2 may appear to contain only useless noise, it is in fact possible to reduce the effect of n_1 in y_1 by constructing an estimate of n_1 using y_2. Correspondingly, $p_{y_2 | y_1, x} = p_{n_2} (v_2 - (v_1 - x_i)) \neq p_{y_2 | y_1}$.
1.1.5.1 Reversibility

An important result in digital communication is the **Reversibility Theorem**, which will be used several times in this text. This theorem is, in effect, a special case of the Theorem on Irrelevance:

Theorem 1.1.4 (Reversibility Theorem) The application of an invertible transformation to the channel output vector \(y \) does not affect the performance of the MAP detector.

Proof: Using the Theorem on Irrelevance, if the channel output is \(y_2 \) and the result of the invertible transformation is \(y_1 = G(y_2) \), with inverse \(y_2 = G^{-1}(y_1) \) then \([y_1 \ y_2] = [y_1 \ G^{-1}(y_1)] \). Then, \(p_{x/y_1, y_2} = p_{x/y_1} \), which is the definition of irrelevance. Thus, either of \(y_1 \) or \(y_2 \) is sufficient to detect \(x \) optimally and attain the same minimum error probability or equivalently the same optimum performance. QED.

Equivalently, Figure 1.10 illustrates the reversibility theorem by constructing a MAP receiver for the output of the invertible transformation \(y_1 \) as the cascade of the inverse filter \(G^{-1} \) and the MAP receiver for the input of the invertible transformation \(y_2 \). The receiver for \(y_2 \) can sometimes be simpler to design than one for \(y_1 \). Later chapters will use this concept to produce equivalent optimum receivers that might not otherwise appear equivalent.

![Figure 1.10: Reversibility theorem illustration.](image)

1.1.6 Optimum Bit-Error Probability and Log Likelihood Decoding

Designers may be interested in minimizing the bit-error probability within a message instead of minimizing the symbol/message error. The message may then be viewed as having \(b \) bits specifically denoted by \(u_j = 1, \ldots, b \) with \(u_j = 0 \) or \(1 \), and abbreviated by the vector \(u \). \(p_{u_j} \) is the probability distribution for \(u_j \). A set of MAP (or ML) detectors, one for each bit, can be designed with error criterion to minimize

\[
P_{e,j} = \Pr(\hat{u}_j \neq u_j) = 1 - \sum_{u_j=0}^{1} \left[\sum_{\mathbf{v} \in D_j} P_{y/u_j}(\hat{u}_j = u_j, \mathbf{v}) \right] \cdot p_{u_j} \quad (1.22)
\]

\[
= 1 - \sum_{u_j=0}^{1} \left[\sum_{\mathbf{v} \in D_j} p_{u_j}(u_j, \mathbf{v}) \cdot p_y(\mathbf{v}) \right]. \quad (1.23)
\]
This error probability is not necessarily equal for each bit, nor consequently equal to the minimized symbol-error probability, \(P_e \), although generally speaking minimizing the symbol error probability will usually lead to better bit-error probability. Calculation of error probability will require the probability distribution of the vector of bits \(p_{u | y} \) in place of \(p_{m | y} \). The notation \(u \setminus u_j \) means the vector \(u \) with the \(j \)th bit removed. The bit-error optimum receiver will average other bits as explicitly indicated by writing \(p_{u_j | y}(u_j, v) \) for any received symbol \(v \) as the sum of \(2^{b-1} \) terms:

\[
p_{y/u_j}(u_j, v) = \sum_{u \setminus u_j} p_{y | u}(u, v) \cdot p_u
\]

(1.24)

\[
P_{e, u_j} = 1 - \sum_{u_j = 0}^{1} \left\{ \sum_{v \in D_j} \sum_{u \setminus u_j} p_{y | u}(u, v) \cdot p_u \right\}.
\]

(1.25)

Thus, the minimized probability of bit error for any bit can then be computed from the given conditional channel-probability distribution and the input bit-vector probabilities (uniform in ML case), albeit the calculations may be tedious. These calculations may be simplified for specific channels, as evident in Section 1.3 for the additive white Gaussian noise channel and in Section 1.4 for the binary symmetric channel and binary erasure channel.

The bit-decision process can sometimes be simplified through the use of log-likelihood ratios (LLRs).

\[
\text{Definition 1.1.5 (Log Likelihood Ratio (LLR))} \quad \text{A log likelihood ratio for a bit } u_j \text{ is the logarithm of ratio of the probabilities that bit takes the value 1 and 0.}
\]

\[
LLR_{u_j}(v) \triangleq \log \left(\frac{P_{u_j=1}(v)}{P_{u_j=0}(v)} \right) = \log \left(\frac{P_{u_j=1}(v)}{1 - P_{u_j=1}(v)} \right) = \log \left(\frac{\sum_{u \setminus u_j} p_{y | u}(y, u | u_j=1, v) \cdot p_u(u | u_j=1)}{\sum_{u \setminus u_j} p_{y | u}(y, u | u_j=0, v) \cdot p_u(u | u_j=0)} \right).
\]

A positive value of \(LLR_{u_j} \) leads to the decision \(\hat{u}_j = 1 \), while a negative value leads to decision \(\hat{u}_j = 0 \). This type of decoding avoids the use of decision regions and maybe useful in systems where many bits are simultaneously decided, and there are relationships (called codes) between the bits that allow iterative construction of all the bits’ log-likelihood ratios that converges to a final set of values that lead to optimum decisions for each bit at the end of the iterative decoding process. LLRs are a form of soft information or soft decisions that are intermediate to a final decision on a quantity, in this case a bit.

1.1.7 \(P_e \) Calculation and The Bhattacharrya Bound

The Bhattacharya Bound (or B-Bound) for error probability finds use in systems with coding (like those of Chapters 2, 8, and beyond). The messages will be presumed to be the indices themselves so that \(m \in \{0, ..., M - 1\} \) each with corresponding symbol value \(x_m \). The B-bound bounds the probability that a specific symbol \(x_{\hat{m}} \) is chosen instead of the correct message \(m \). This error event is denoted \(\epsilon_{m, \hat{m}} \) with probability \(P\{\epsilon_{m, \hat{m}}\} \).
Theorem 1.1.5 (Bhattacharya Bound) The error probability, using a maximum-likelihood decoder, that corresponds to choosing message \tilde{m} in place of the correct message m is generally bounded according to the following expression:

$$P\{\varepsilon_{m\tilde{m}}\} \leq \sum_{v} \sqrt{py/x(v, x_{\tilde{m}}) \cdot py/x(v, x_{m})}$$ (1.26)

Proof: Let $P\{\varepsilon_{m\tilde{m}}\}$ denote the probability that message m is erroneously decided by a maximum likelihood decoder to be message \tilde{m}. Then, the corresponding received symbol $y = v$ must be such that $py/x(v, x_{\tilde{m}}) \geq py/x(v, x_{m})$. The region of v over which this error could occur is denoted $D_{m\tilde{m}}$:

$$D_{m\tilde{m}}(v) \triangleq \left\{ v : \frac{py/x(v, x_{\tilde{m}})}{py/x(v, x_{m})} \geq 1 \right\} .$$ (1.27)

Then,

$$P\{\varepsilon_{m\tilde{m}}\} = \sum_{v \in D_{m\tilde{m}}(v)} py/x(v, x_{m}) = \sum_{v} f(v) \cdot py/x(v, x_{m}) ,$$ (1.28)

where

$$f(v) \triangleq \begin{cases} 1 & v \in D_{m\tilde{m}}(v) \\ 0 & v \notin D_{m\tilde{m}}(v) \end{cases} .$$ (1.29)

Further,

$$f(v) \leq \left[\frac{py/x(v, x_{\tilde{m}})}{py/x(v, x_{m})} \right]^{1/2} ,$$ (1.30)

and thus (1.28) becomes

$$P\{\varepsilon_{m\tilde{m}}\} \leq \sum_{v} \sqrt{py/x(v, x_{\tilde{m}}) \cdot py/x(v, x_{m})}$$ (1.31)

QED.

A memoryless channel (see Section 1.4 for more on memoryless channels) has the property

$$py/x = \prod_{n=1}^{N} p_{y_{n}/x_{n}} .$$ (1.32)

Memoryless channels essentially have independent dimensions. For such channels the B-Bound takes a simpler form through the repeated use of distribution of multiplication over addition:

$$P\{\varepsilon_{m\tilde{m}}\} \leq \prod_{n=1}^{N} \prod_{y_{n}} \sqrt{py/x(y_{n}, x_{\tilde{m}, n}) \cdot py/x(y_{n}, x_{m,n})} = \prod_{n=1}^{N} \sum_{y_{n}} \sqrt{py/x(y_{n}, x_{\tilde{m}}, n) \cdot py/x(y_{n}, x_{m,n})} .$$ (1.33)

The sum over each dimension’s output symbol values can be much less complex than the vector summation in the general case. Specialization to the case of bit-error probability and the vector u being treated as a symbol vector itself creates a special form. In this case, it is often convenient to investigate the messages m and \tilde{m} differing in d_{H} bit positions. If the bit-error probability were the same on all dimensions and set equal to p, then the B-bound has form:

$$P\{\varepsilon_{m\tilde{m}}\} \leq \prod_{n=1}^{N} \sum_{y_{n}} \sqrt{py/x(y_{n}, \tilde{u}_{n}) \cdot py/x(y_{n}, 0)}$$ (1.34)
\begin{align*}
= \prod_{i=1}^{d_H} \sum_{y_n} \sqrt{p_{y/x}(y_n, 1) \cdot p_{y/x}(y_n, 0)} & \quad (1.35) \\
= \prod_{i=1}^{d_H} \sum_{y_n} \sqrt{p(1 - p)} & \quad (1.36) \\
= [4p(1 - p)]^{d_H/2} & \quad (1.37)
\end{align*}
1.2 Data Modulation and Demodulation for Continuous-Time Channels

Figure 1.11 generalizes Figure 1.2 to continuous time. Continuous-time channels occur in many practical situations where the channel accepts only a continuous-time or “analog” waveform, \(x(t) \), called a signal. The corresponding received signal, \(y(t) \), is also continuous time. Examples include virtually all wireless channels where electromagnetic waveforms are physically transmitted, not actually the symbols. Examples also include virtually all forms of wireline (transmission-line or waveguide, optical or metallic) connections. These continuous-time channels require that the transmit symbols correspond uniquely to a set of continuous-time signals, \(\{ x_i(t) \}_{i=0}^{M-1} \).

As in Figure 1.11, the modulator converts the symbol vector \(x \) into the continuous-time signal that the transmitter sends into the continuous-time channel. Correspondingly, the demodulator converts continuous-time received signal \(y(t) \) into the received-symbol vector \(y \), from which the detector tries to estimate \(x \), shown as \(\hat{x} \), and thus also into the message sent through the decoder. The estimated message, one from the message set associated with the message sender, then are provided by the receiver to the message recipient. A desirable property would be that the continuous-time channel can be completely represented by a discrete-time channel of Section 1.1. Indeed a very important practical channel, Section 1.3’s Additive White Gaussian Noise (AWGN) channel, can be so converted without loss into a discrete-time equivalent channel exactly like that in Figure 1.11.

As an example, Binary Phase-Shift Keying (BPSK) is perhaps one of the simplest forms of modulation:

EXAMPLE 1.2.1 (Binary Phase-Shift Keying (BPSK)) Figure 1.12 repeats Figure 1.1 with a specific linear time-invariant channel that has the transfer function indicated. This channel essentially passes signals between 100 Hz and 200 Hz with 150 Hz having the largest gain. Binary logic familiar to most electrical engineers transmits some positive voltage level (say perhaps 1 volt) for a 1 and another voltage level (say 0 volts) for a 0 inside integrated circuits. Clearly such a constant 1/0 transmission on this “DC-blocking” channel would not pass through Figure 1.12’s channel, leaving a received signal level of nearly 0 regardless of the channel-input signal’s constant voltage level. This zero received-signal level would complicate receiver detection of the correct message. Instead the two modulated signals \(x_0(t) = +\cos(2\pi 150t) \) and \(x_1(t) = -\cos(2\pi 150t) \) easily pass through this channel and are

![Diagram of data transmission with a continuous-time channel](image-url)
more readily distinguishable by the receiver. This latter type of transmission is an example of BPSK. If the symbol period is 1 second and if successive transmission is used, the data rate would be 1 bit per second (1 bps). In more detail, the engineer could recognize the trivial vector encoder that converts the message bit of 0 or 1 into the real one-dimensional vectors \(x_0 = +1 \) and \(x_1 = -1 \). The modulator simply multiplies this \(x_1 \) value by the function \(\cos(2\pi t) \) to obtain BPSK.

![Diagram](image)

Figure 1.12: Example of channel for which 1 volt and 0 volt binary transmission is inappropriate, but BPSK modulation matches well.

Section 1.1’s vector representation however is common and leads to a single modulation-independent performance analysis of the data transmission (or storage) system. This section describes such a discrete vector representation of any continuous-time signal set and the conversion between the vector symbols and the continuous-time signals. This symbol-based analysis approach was pioneered by Wozencraft and Jacobs. Each modulation method selects a set of basis functions that link a constellation \(\{x_i\} \) with the continuous signals \(\{x_i(t)\} \). The modulation basis-function choice usually depends upon the channel. This section and Section 1.3 investigate and enumerate a number of different basis functions as well as the modulation-independent constellation designs that can be used with any modulation choice.

1.2.1 Signal Waveform Representation by Vectors

The reader should be familiar with the infinite-series decomposition of continuous-time signals from the basic electrical-engineering study of Fourier transforms. For the transmission and detection of a message during a symbol period, this text considers the set of real-valued functions \(\{f(t)\} \) such that \(\int_0^T f^2(t) dt < \infty \) (technically known as the Hilbert space of continuous-time functions and abbreviated as \(L_2[0, T] \)). This infinite dimensional vector space has an inner product that measures a distance-scaled angle between two different functions \(f(t) \) and \(g(t) \),

\[
\langle f(t), g(t) \rangle = \int_0^T f(t) \cdot g(t) dt.
\]

However, this chapter is mainly concerned with a single transmission. Each of this example’s successive transmissions could be treated independently by ignoring transients at the beginning and/or end of any message transmission, because these transients would likely be negligible in time extent compared to a 1 second symbol period.
Definition 1.2.2 more formally addresses the inner product.

An **orthonormal basis function** allows formalization of the modulation concept:

Definition 1.2.1 (Orthonormal Basis Functions) A set of \(N \) functions \(\{ \varphi_n(t) \} \) constitute an \(N \)-dimensional orthonormal basis if they satisfy the following property:

\[
\int_{-\infty}^{\infty} \varphi_m(t) \cdot \varphi_n(t) dt = \delta_{mn} = \begin{cases}
1 & m = n \\
0 & m \neq n
\end{cases}.
\]

The discrete-time function \(\delta_{mn} \) will be called the **discrete delta function**\(^{13} \). Any continuous-time function (or signal) \(x(t) \in L_2(0,T) \) decomposes according to some set of \(N \) orthonormal basis functions \(\{ \varphi_i(t) \}_{n=1}^N \) as

\[
x(t) = \sum_{n=1}^{N} x_n \cdot \varphi_n(t)
\]

where \(\varphi_n(t) \) satisfy \(\langle \varphi_n(t), \varphi_m(t) \rangle = 1 \) for \(n = m \) and 0 otherwise, often written \(\langle \varphi_n(t), \varphi_m(t) \rangle = \delta_{nm} \).

The modulated signal \(x(t) \) thus relates to the symbol vector of \(\mathbf{x} \) though its dimensional components:

\[
\mathbf{x} = \begin{bmatrix}
x_1 \\
\vdots \\
x_N
\end{bmatrix}.
\]

The number of basis functions that represent the signal set \(\{ x_i(t) \} \) for a particular modulation choice may be infinite, i.e. \(N \) may equal \(\infty \), but are the same for each possible symbol value in the constellation and correspondingly for each possible signal in the signal set. Each signal \(x_i(t) \) maps to a set of \(N \) real numbers \(\{ x_{in} \} \); these real-valued scalar coefficients assemble into the \(N \)-dimensional symbol vector \(\mathbf{x} \).

Figure 1.13 illustrates the signal \(x(t) \) graphically for \(N = 3 \)-dimensional symbol with axes defined by the modulation basis functions \(\{ \varphi_n(t) \} \).

\(^{13}\delta_{mn} \) is also called a “Kronecker” delta.
Such a geometric viewpoint advantageously enables the visualization of the distance between continuous-time functions using distances between the associated symbol vectors in \mathcal{R}^N, the space of N-dimensional real vectors when x is a real vector. In fact, later developments show

$$\langle x_1(t), x_2(t) \rangle = \langle x_1, x_2 \rangle,$$ \hspace{1cm} (1.39)

where Equation (1.39)’s right-hand side is the usual Euclidean inner product in \mathcal{R}^N (discussed later in Definition 1.2.2). This continuous-time modulation representation formally extends to random processes using what is known as a “Karhunen-Loeve expansion,” where the values x_n are considered random variables, and the functions $\varphi_n(t)$ are deterministic. Thus, the message index, i, usually does not appear, but the vector symbol value x is randomly chosen according to the message distribution from the symbol set in use. Thus, x_n refers to a random message component on the n^{th} modulator basis function, and not the “n^{th} message” as this text proceeds to avoid notational proliferation. The basis functions also extend for all time, i.e. on the infinite time interval $(-\infty, \infty)$, in which case the inner product becomes $\langle f(t), g(t) \rangle = \int_{-\infty}^{\infty} f(t) \cdot g(t) dt$. The modulator’s composition of random processes is fundamental to demodulation and detection in the presence of noise. Modulation constructively assembles random signals for the communication system from a basis-function set $\{\varphi_n(t)\}$ and a set of symbol vectors $\{x_i\}$. The chosen basis functions and symbol vectors typically satisfy system physical constraints and determine performance in the presence of noise.

Figure 1.14 explicitly shows construction of a modulated waveform $x(t)$, where again, each distinct symbol constellation vector point corresponds to a different modulated waveform, but all the waveforms share the same set of basis functions.

![Figure 1.14: The modulator.](image)

The power available in any physical communication system limits the average amount of energy required to transmit each successive data symbol. With inner productions, definition 1.1.2’s average energy becomes

$$E_x = E[\langle x(t), x(t) \rangle] = E[\langle x, x \rangle] = E[\|x\|^2],$$ \hspace{1cm} (1.40)

or equivalently the average length of the constellation’s symbol vectors. The minimization of E_x intuitively places signal-constellation points near the origin; however, the distance between points shall relate
to the probability of correctly detecting the symbols in the presence of noise. The geometric problem of optimally arranging points in a vector space with minimum average energy while maintaining at least a minimum distance between each pair of points is the well-studied sphere-packing problem, said geometric viewpoint of communication formalized first in Shannon’s 1948 seminal famous work, A Mathematical Theory of Communication (Bell Systems Technical Journal). Chapter 2 addresses directly this coding challenge through the use of symbol constellations (no matter the explicit modulation-type details).

1.2.2 Modulator Examples

Returning to Example 1.2.1, the next example illustrates the utility of the basis-function concept:

EXAMPLE 1.2.2 (BPSK revisited) A more general form of BPSK’s basis functions, which are parameterized by variable T, is $\varphi_1(t) = \sqrt{2} T \cos \left[\frac{2\pi}{T} t + \frac{\pi}{4} \right]$ and $\varphi_2(t) = \sqrt{2} T \cos \left[\frac{2\pi}{T} t - \frac{\pi}{4} \right]$ for $0 \leq t \leq T$ and 0 elsewhere. These two basis functions ($N = 2$), $\varphi_1(t)$ and $\varphi_2(t)$, are shown in Figure 1.15.

The two basis functions are orthogonal to each other and both have unit energy, thus satisfying the orthonormality condition. The two possible modulated signals transmitted during the interval $[0, T]$ also appear in Figure 1.15, where $x_0(t) = \varphi_1(t) - \varphi_2(t)$ and $x_1(t) = \varphi_2(t) - \varphi_1(t)$. Thus, the data symbol vectors associated with the continuous-time signals are $x_0 = [1 - 1]'$ and $x_1 = [-1 1]'$ (a prime denotes transpose). The signal constellation appears in Figure 1.16.
The resulting waveforms are $x_0(t) = -\frac{2}{\sqrt{T}} \sin\left(\frac{2\pi t}{T}\right)$ and $x_1(t) = \frac{2}{\sqrt{T}} \sin\left(\frac{2\pi t}{T}\right)$. The name “binary phase-shift keying,” because the two waveforms are shifted in phase from each other. Other basis functions (and rotated versions of the constellation) could thus also be called BPSK. Since only two possible waveforms are transmitted during each T second symbol period, the data rate is $R = \log_2(2) = 1$ bit per T seconds. Thus to transmit at 1 million bits per second, or abreviaed 1 Mbps, T must equal 10^{-6} seconds or 1 μs. (Additional scaling may adjust the BPSK transmit power/energy level to some desired value, and then applies uniformly to all possible constellation points and transmit signals.)

Another set of basis functions is known as “FM code” (FM is ”Frequency Modulation”) in the storage industry and also as “Manchester Encoding” in data communications. This method is used to write (modulate) in many commercial disk storage products. It was also used in a quite different area known as “Ethernet” (Ethernet is commonly used in local area networks short distance wired data transmission). The basis functions are approximated in Figure 1.17 – in practice, the sharp edges are somewhat smoother depending on the specific implementation. The two basis functions again satisfy the orthonormality condition. The data rate equals one bit per T seconds; for a data transfer rate into the disk of 1 GByte/s or 8 Gbps, $T = 1/(8GHz) = 125ps$; by contrast at the different data rate of 10 Gbps in “10Gbase-SR Ethernet,” $T = 100$ ps. However, both modulation methods have the same signal constellation. Thus, for the FM/Mancester example, only two signal-constellation points are used, $x_0 = [1 - 1]'$ and $x_1 = [-1 1]'$, as shown in Figure 1.16, although the basis functions differ from the previous example. The resulting modulated waveforms appear in Figure 1.17 and correspond to the write currents that are applied to the head in the FM storage system. (Additional scaling may be used to adjust either the FM or Ethernet transmit power/energy level to some desired value, but this simply scales all possible constellation points and transmit signals by the same constant value.)

14In fact, Ethernet systems use 66/64 times higher symbol rate because of some overhead carried.
The common vector space representation (i.e. signal constellation) of the “Ethernet/FM” and “BPSK” examples allows the performance of a detector to be analyzed for either system in the same way, despite the gross differences in the overall systems.

In either of the systems in Example 1.2.2, a more compact representation of the signals with only one basis function is possible. (As an exercise, the reader should conjecture what this basis function could be and what the associated signal constellation would be.) Appendix A considers the construction of a minimal set of basis functions for a given set of modulated waveforms, which is often called “Gram-Schmidt” decomposition.

Two more examples briefly illustrate vector components \(x_n \) that are not necessarily binary-valued.

EXAMPLE 1.2.3 (Short-Haul non-coherent Fiber Ethernet 802.3bm - 2B1Q)

This transmission system over fiber-optic cable uses \(M = 4 \) waveforms with one basis function \(N = 1 \). Thus, the system transmits \(b = 2 \) bits of information per \(T \) seconds of channel use. The basis function is roughly approximated\(^{16} \) by \(\varphi_1(t) = \sqrt{\frac{1}{T}} \text{sinc}(\frac{t}{T}) \), where \(1/T = 53.125 \text{ GHz} \), and \(\text{sinc}(x) \triangleq \frac{\sin(\pi x)}{\pi x} \). This basis function is not time limited to the interval \([0, T] \). The associated signal constellation appears in Figure 1.18. Longer-distance fiber transmission (up to 2 km) may transmit at 1/2 this symbol rate (26.5625 GHz), so at roughly 50 Gbps in other related IEEE 802.3 “Ethernet” standards. 2 bits are transmitted using one 4-level (or “quaternary”) symbol every \(T \) seconds, hence the name “2B1Q.”

\(^{15}\)IEEE 802.3bm is a standard that contains specifications for short-length non-coherent transmission at (roughly) 100 Gbps on each of up to 8-16 parallel channels (8 wavelengths with each having two polarizations) on up to roughly 500m of fiber. IEEE 802.3 standards also use other constellations for alternatives on longer lengths of fiber.

\(^{16}\)Actually \(1/\sqrt{T} \text{sinc}(t/T) \), or some other “Nyquist” pulse shape is used, see Chapter 3 on Intersymbol Interference.
By contrast, telephone companies once long ago heavily transmitted the much lower data rate 1.544 Mbps “T1 Service” symmetrically on twisted pairs between the switches, or between switches and a small business (such a signal often carried twenty-four 64 kbps digital voice signals plus overhead signaling information of 8 kbps). A single very different basis function (with a much lower symbol rate) and the same constellation appear in these methods. A method, known as HDSL (High-bit-rate Digital Subscriber Lines), uses 2B1Q with $1/T = 392$ kHz, and thus transmits a data rate of 784 kbps on each of two phone lines for a total of 1.568 Mbps (1.544 Mbps plus 24 kbps of additional HDSL management overhead). The range of this system is about 2 miles of twisted pair. Other versions of this modulation type with $M = 8, 16,$ or 32 and corresponding T values to get 1.544 Mbps, and higher data rates, on a single twisted pair at different lengths that may be shorter than 2 miles. This is known as “Symmetric HDSL” or just “SDSL” or ITU standard G.991. The two very different transmission systems, fiber Ethernet and SDSL, use the same constellation and can be analyzed identically.

A second example uses two dimensions, similar to BPSK:

EXAMPLE 1.2.4 (32 Cross quadrature amplitude modulation) Consider a signal set with 32 waveforms ($M = 32$) and with 2 basis functions ($N = 2$) for transmission of 32 signals per symbol. The two BPSK-like basis functions for this “quadrature amplitude modulation” (see Section 1.3 for formal definition) are $\varphi_1(t) = \sqrt{2} T \cdot \cos \frac{\pi t}{T}$ and $\varphi_2(t) = \sqrt{2} T \cdot \sin \frac{\pi t}{T}$ for $0 \leq t \leq T$ and 0 elsewhere. A raw bit rate of 12.0 Gbps17 occurs with a symbol rate of $1/T = 2.4$ GHz. The signal constellation is shown in Figure 1.19; the 32 points are arranged in a rotated cross pattern, called 32 CR or 32 cross.

17The actual user information rate might actually 9.6 Gbps with the extra bits used for error-correction purposes as shown in Chapters 2 and 8.
The last two examples also emphasize another tacit advantage of the vector representation, namely that the details of the rates and carrier frequencies in the basis-function modulation format are implicit in the normalization of the basis functions. Thus, these functions do not appear in the description of the signal constellation, allowing Section 1.1’s results to apply across a wide range of data rates, symbol rates, and system bandwidths.

1.2.3 Vector-Space Interpretation of the Modulated Waveforms

This section more formally defines the inner product of two time functions and/or of two N-dimensional vectors:

Definition 1.2.2 (Inner Product) The inner product of two (real) functions of time $u(t)$ and $v(t)$ is

$$
\langle u(t), v(t) \rangle \overset{\Delta}{=} \int_{-\infty}^{\infty} u(t) \cdot v(t) dt.
$$

(1.41)

The inner product of two (real) vectors u and v is

$$
\langle u, v \rangle \overset{\Delta}{=} u^* v = \sum_{n=1}^{N} u_n \cdot v_n,
$$

(1.42)

where $*$ denotes vector transpose (and conjugate vector transpose later when complex signals are introduced).

The two inner products in the above definition are equal under the conditions in the following theorem:
Theorem 1.2.1 (Inner-product Invariance) If there exists a set of basis functions \(\varphi_n(t), n = 1, ..., N \) for some \(N \) such that \(u(t) = \sum_{n=1}^{N} u_n \cdot \varphi_n(t) \) and \(v(t) = \sum_{n=1}^{N} v_n \cdot \varphi_n(t) \) then

\[
\langle u(t), v(t) \rangle = \langle u, v \rangle .
\]

where

\[
\begin{bmatrix}
 u_1 \\
 \vdots \\
 u_N
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
 v_1 \\
 \vdots \\
 v_N
\end{bmatrix}.
\]

The proof follows from

\[
\langle u(t), v(t) \rangle = \int_{-\infty}^{\infty} u(t) \cdot v(t) dt = \int_{-\infty}^{\infty} \sum_{n=1}^{N} \sum_{m=1}^{N} u_n \cdot v_m \cdot \varphi_n(t) \cdot \varphi_m(t) dt
\]

\[
= \sum_{n=1}^{N} \sum_{m=1}^{N} u_n \cdot v_m \int_{-\infty}^{\infty} \varphi_n(t) \cdot \varphi_m(t) dt = \sum_{n=1}^{N} \sum_{m=1}^{N} u_n \cdot v_m \cdot \delta_{nm} = \sum_{n=1}^{N} u_n \cdot v_n
\]

\[
= \langle u, v \rangle \quad \text{QED.}
\]

Thus the inner product is “invariant” to the choice of basis functions and only depends on the components of the time functions along each of the basis functions. While the inner product is invariant to the choice of basis functions, the component values of the data symbols depend on basis functions. For example, for the 32CR example, one could recognize that the integral

\[
\frac{T}{2} \int_{0}^{T} \left[2 \cos \left(\frac{2\pi t}{T} \right) + \sin \left(\frac{2\pi t}{T} \right) \right] \cdot \left[\cos \left(\frac{2\pi t}{T} \right) + 2 \sin \left(\frac{2\pi t}{T} \right) \right] dt = 2 \cdot 1 + 2 \cdot 2 = 4.
\]

Parseval’s Identity is a special case (with \(x = u = v \)) of inner-product invariance.

Theorem 1.2.2 (Parseval’s Identity) The following relation holds true for any modulated waveform

\[
\mathcal{E}_x = E \left[||x||^2 \right] = E \left[\int_{-\infty}^{\infty} x^2(t) dt \right] .
\]

The proof follows from the previous Theorem 1.2.1 with \(u = v = x \)

\[
E \left[\langle u(t), v(t) \rangle \right] = E \left[\langle x, x \rangle \right] \quad (1.49)
\]

\[
= E \left[\sum_{n=1}^{N} x_n \cdot x_n \right] \quad (1.50)
\]

\[
= E \left[||x||^2 \right] \quad (1.51)
\]

\[
= \mathcal{E}_x \quad \text{QED.} \quad (1.52)
\]

Parseval’s Identity implies that the average energy of a signal constellation is invariant to the basis-function choice, as long as they satisfy the orthonormality condition of Equation (1.38). As another 32CR example, the energy of the [2,1] point is \(\frac{T}{2} \int_{0}^{T} \left[2 \cos \left(\frac{2\pi t}{T} \right) + \sin \left(\frac{2\pi t}{T} \right) \right]^2 dt = 2 \cdot 2 + 1 \cdot 1 = 5 \).

The individual basis functions themselves have a trivial vector representation; namely \(\varphi_n(t) \) is represented by \(\varphi_n = [0 \ 0 \ 0 \ 1 \ 0 \ 0 \ \cdots \ 0]^*, \) where the 1 occurs in the \(n^{th} \) position. Thus, the data symbol \(x_i \) has a representation in terms of the unit basis vectors \(\varphi_n \) that is

\[
x_i = \sum_{n=1}^{N} x_{in} \cdot \varphi_n .
\]

(1.53)
The data-symbol component x_{in} can be determined as

$$x_{in} = \langle x_i, \varphi_n \rangle,$$ \hspace{1cm} (1.54)

which, using inner-product invariance, becomes

$$x_{in} = \langle x_i(t), \varphi_n(t) \rangle = \int_{-\infty}^{\infty} x_i(t) \cdot \varphi_n(t) dt \hspace{0.5cm} n = 1, ..., N.$$ \hspace{1cm} (1.55)

Thus any modulated-waveform set \{ $x_i(t)$ \} can be interpreted as a vector signal constellation, with the components of any particular vector x_i given by Equation (1.55). In effect, x_{in} is the ith modulated waveform’s projection on the nth basis function. Appendix A’s Gram-Schmidt procedure can be used to determine the minimum number of basis functions needed to represent any signal in the signal set.

1.2.4 Demodulation

As in Equation (1.55), the data symbol vector x can be recovered, component-by-component, by computing the inner product of $x(t)$ with each of the N basis functions. This recovery is called **correlative demodulation** because the modulated signal, $x(t)$, is “correlated” with each of the basis functions to determine x, as Figure 1.20 illustrates.

The modulated signal, $x(t)$, is first multiplied by each of the basis functions in parallel, and the multipliers’ outputs then each pass to an integrator to produce a corresponding data-symbol component x_n. Practical realization of the multipliers and integrators may be difficult. Any physically implementable set of basis functions so far exists over the symbol period.\(^{18}\) Then the computation of x_n alternately becomes

$$x_n = \int_{0}^{T} x(t) \cdot \varphi_n(t) dt .$$ \hspace{1cm} (1.56)

The computation in (1.56) is more easily implemented by noting that it is equal to

$$x(t) * \varphi_n(T - t)|_{t=T} ,$$ \hspace{1cm} (1.57)

\(^{18}\)This restriction to a finite time interval is later removed with the introduction of “Nyquist” Pulse shapes in Chapter 3, and the term “symbol period” will be correspondingly relaxed and expanded.
where $*$ indicates convolution. The signal’s component x_n along the n^{th} basis function is equivalent to the convolution (filter) of the waveform $x(t)$ with a filter $\varphi_n(T-t)$ at output sample time T. Such a matched-filter demodulator “matches” the received signal to the corresponding modulator basis function. Figure 1.21 illustrates matched-filter demodulation.

![Figure 1.21: The matched-filter demodulator.](image_url)

Figure 1.21 thus illustrates a conversion between the data symbol and the corresponding modulated waveform such that the modulated waveform can be represented by a finite (or countably infinite as $N \to \infty$) set of components along an orthonormal set of basis functions. Sections 1.1 used and 1.3 will use this concept to analyze the performance of some modulation schemes on the AWGN channel.

1.2.5 MIMO Channel Basics

Multiple-Input-Multiple-Output (MIMO) channels also are vector channels. Figure 1.22 illustrates that the simplest MIMO cases may not use an adder in the modulator. Consequently, multiple signals pass through several parallel channels. In these simplest MIMO cases, the MIMO basis functions need only be normalized, and need not be necessarily orthogonal on the different parallel channels, because the infrastructure itself ensures the orthogonality (as indicated by the parallel dashed lines through the MIMO channel). There are thus L “spatial” or “space-time” dimensions corresponding to the L MIMO channels. At a basic mathematics level, “a dimension is a dimension” (space, time, frequency, or otherwise); however this text usually tries to use N as an index that implies the dimensions arise from decomposing frequency-time at a single point in space while L will usually apply to dimensions generated at different points in space and time while using the same frequency. It is possible that there are N orthonormal basis functions used on each of the L spatial channels, leading to an overall dimensionality of $N_{total} = L \cdot N$ and a more complex channel/system. More complete discussion of such larger dimensionality appears in Chapters 3, 4, and beyond.
A vector basis function becomes
\[\varphi(t) = \begin{bmatrix} \varphi_1(t) \\ \vdots \\ \varphi_L(t) \end{bmatrix}, \]
and a matrix of such basis functions stacked as column vectors is
\[\Phi \triangleq [\varphi_1(t) \ldots \varphi_N(t)] . \]

For the MIMO channel, the channel input then becomes
\[x(t) = \sum_{n=1}^{N} \varphi_n(t) \cdot x_n = \Phi \cdot x . \]

The \(\varphi_n(t) \) could be a common set of basis functions used on all the parallel channels. In the simplest MIMO case,
\[\varphi_1(t) = \begin{bmatrix} \varphi_1(t) \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \]
while similarly all \(N \) such simple basis function vectors have only one non-zero component in the \(n^{th} \) place. This makes each MIMO dimension a separate channel.

An example could be a system that has \(L = N \) highly directional transmit antennas that each point at another set of \(L = N \) highly directional receive antennas. In effect, each transmit antenna has an input component \(x_n \) of a transmit vector \(x_n \) with on the \(n^{th} \) normalized basis function vector \(\varphi_n(t) \) that passes only to the corresponding \(n^{th} \) output antenna. These types of systems are used in licensed

19If different parallel channels had different functions, the total set would be the union of all sets as long as orthonormality is retained in creating the set of larger functions for modulation across all channels.
wireless-band systems like cellular and Wi-Fi standards for wireless communication. The receivers as a set have corresponding components y_n, which can be aggregated into a channel-output vector \mathbf{y}. Similarly, L parallel wires could be used between common end points to increase speed. For instance, the IEEE 803.3z 1 Gbps Ethernet standard uses 4 parallel twisted pairs that each carry 250 Mbps of individual throughput (the actual data rate is 312.5 Mbps because an extra 25\% is used for overhead that is not counted as user data in the quotation of 250 Mbps speed to user). These sets of $L = 4$ wires are often called ethernet cables, connecting with the familiar RJ45 connectors for ethernet (if one looks closely, 8 wires or 4 twisted pairs are in those connectors). Yet another example occurs in the above mentioned IEEE 802.3 ethernet fiber standards for 40 and 100 Gbps where 4 wavelengths on the same fiber (with no interference between them) each carry 1/4 of the overall data rate. Sometimes there is leakage between the channels, known as crosstalk, which is similar to the “intersymbol interference” addressed in Chapter 3, but crosstalk is better termed as “intra-symbol” interference. This topic is addressed in Section 1.5 and Chapters 4, 5, as well as later chapters. Important here is that the MIMO channel also fits into the vector-channel analysis that is common then to all forms of transmission in this book.

The inner product of vector functions simply generalizes to (a superscript of * denotes transpose here)

$$\langle \mathbf{f}(t), \mathbf{g}(t) \rangle = \int_0^T \mathbf{f}^*(t) \cdot \mathbf{g}(t) dt ,$$

(1.62)

basically a sum of integrals instead of a single integral previously20. Inner products of the components on the (now) vector basis functions again equal the sum-of-integral inner products. This entire section could be reread with the basis vector functions replacing the scalar basis functions, and the modulated signal being a vector of transmitted time-domain waveforms $\mathbf{x}(t)$ that results in a vector of channel output waveforms $\mathbf{y}(t)$. For basis functions, MIMO orthogonality need not always apply across independent links (the independence assuring the effective equivalent of orthogonality), but usually the functions are normalized.

20It is sometimes convenient in vector functions also to write the inner product as $\langle \mathbf{f}(t), \mathbf{g}(t) \rangle = \text{trace} \left\{ \int_0^T \mathbf{f}(t) \cdot \mathbf{g}^*(t) dt \right\}$, which the astute reader may notice is the same for real functions. Indeed, any generalized norm can be used and the entire theory revisited for those familiar with vector spaces and norms/inner-products.
1.3 The Additive White Gaussian Noise (AWGN) Channel

Figure 1.23’s AWGN is perhaps the most important, and certainly the most analyzed, continuous-time communication channel.

![Diagram of the AWGN channel](image)

Figure 1.23: The AWGN channel.

The AWGN channel sums the modulated signal $x(t)$ with an uncorrelated Gaussian noise $n(t)$ to produce the received signal $y(t)$ (at the channel output or equivalently input to the receiver). The stationary\(^{21}\) Gaussian noise is uncorrelated with itself (or “white”) for any non-zero time offset τ, that is

$$E[n(t) \cdot n(t - \tau)] = \frac{N_0}{2} \cdot \delta(\tau),$$

and has zero mean, $E[n(t)] = 0$. For the MIMO case, white noise generalizes to identically distributed, independent AWGNs added to each output dimension\(^{22}\). "Colored" noise is considered in Section 1.3.7.

The assumption of white Gaussian noise is valid in the very common situation where the noise is predominantly determined by analog front-end receiver’s thermal noise. Such noise has a power spectral density given by the Boltzman equation:

$$N(f) = \frac{hf}{e^{hf/kT} - 1} \approx kT \text{ for } "\text{small}" \ f < 10^{12} \text{ THz},$$

where Boltzman’s constant is $k = 1.38 \times 10^{-23}$ Joules/degree Kelvin, Planck’s constant is $h = 6.63 \times 10^{-34}$ Watt-s\(^2\), and T is the temperature on the Kelvin (absolute) scale. This power spectral density is approximately -174 dBm/Hz (10\(^{-17.4}\) mW/Hz) at room temperature (larger in practice). The Gaussian distribution assumption is a consequence of the addition of many small contributing noise sources, thus invoking the Central Limit Theorem\(^{23}\).

This section’s long AWGN development begins with Subsection 1.3.1 that shows that Section 1.2’s modulation and demodulation process and consequent discrete vector-symbol transmission channel completely represents the AWGN; that is, there is no loss with respect to optimum performance even though continuous time is replaced by a discrete set of vector-symbol values. Subsection 1.3.1 also introduces the important concept of a signal-to-noise ratio, and its maximization, which is a recurring theme both in this text book and in good transmission design and analysis. Subsection 1.3.2 then progresses to develop many performance-analysis simplifications that are possible with the AWGN, particularly error probability bounds that are tight and depend only on distance between constellation symbol vectors and

\(^{21}\)The Gaussian noise is strict sense stationary (See Appendix A for a discussion of stationarity types)

\(^{22}\)All proofs in this section then generalize easily to the case where scalar x, y, and φ are generalized to vectors with the more general definition of inner product at the end of Subsection 1.2.5.

\(^{23}\)The Central Limit Theorem is presumed known to the reader and basically says that the sum of many independent random variables tends towards a Gaussian distribution.
the number of nearest neighbors. These simplifications also recur throughout this book and in practical
design. This leads to Subsection 1.3.3’s discussion of fair comparison, a topic somewhat unique to this
text and that reinforces a view of transmission that recognizes dimensionality in all its forms (often
an area where area experts have different opinions because this fair comparison area is overlooked or
misunderstood). Subsection 1.3.4 enumerates and evaluates many commonly encountered constellations
and designs. Subsections 1.3.5 and 1.3.6 extend to complex channels. Complex symbol vectors thereafter
replace previous subsections’ real symbol vectors to simplify and extend analysis to channels where an
exterior carrier is used to translate signals to and from an an appropriate frequency band. The use
of complex arithmetic effectively makes the carrier superfluous to simplify analysis. The text will then
proceed with complex signals, symbols, and various systems that process them with complex symbols re-
placing and/or generalizing real symbols. Subsection 1.3.7 then addresses bandlimits or filtered AWGN’s
and the closely related concept of “colored” (not white) additive Gaussian noise.

1.3.1 Continuous-Time AWGN Conversion to a Vector AWGN Channel

In the absence of Figure 1.23’s additive noise, \(y(t) = x(t) \), and Subsection 1.2.4’s demodulation pro-
cess exactly recover a the transmitted signal. This subsection shows that for the AWGN Channel,
this demodulation process provides sufficient information to determine optimally the transmitted sig-

nal. The demodulator’s components \(y \Delta = \langle y(t), \phi_l(t) \rangle \), \(l = 1, \ldots, N \) comprise a vector channel output,
\(y = [y_1, \ldots, y_N]^T \) that is equivalent for detection purposes to \(y(t) \). The analysis can thus convert the
continuous channel \(y(t) = x(t) + n(t) \) to a discrete vector channel model,

\[
y = x + n, \tag{1.65}
\]

where \(n \Delta = [n_1 \ n_2 \ldots \ n_N] \) and \(n_l \Delta = \langle n(t), \varphi_l(t) \rangle \). The received symbol vector at the demodulator output
is the sum of the modulated signal’s vector equivalent and a demodulated-noise vector. However, the
exact noise sample function may not be reconstructed from \(n \),

\[
n(t) \neq \sum_{l=1}^{N} n_l \cdot \varphi_l(t) \Delta \hat{n}(t) , \tag{1.66}
\]

or equivalently,

\[
y(t) \neq \sum_{l=1}^{N} y_l \cdot \varphi_l(t) \Delta \hat{y}(t) . \tag{1.67}
\]

There may exist a component of \(n(t) \) that is orthogonal to the space spanned by the basis functions
\(\{\varphi_1(t) \ldots \varphi_N(t)\} \). This unrepresented noise component is

\[
\hat{n}(t) \Delta = n(t) - \hat{n}(t) = y(t) - \hat{y}(t) , \tag{1.68}
\]

from which a lemma quickly follows:

Lemma 1.3.1 (Uncorrelated noise samples) The AWGN Noise samples in the de-
modulated noise vector are independent and of equal variance \(\frac{N_0}{2} \).

Proof: Write

\[
E[n_k n_l] = E \left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} n(t) \cdot n(s) \cdot \varphi_k(t) \cdot \varphi_l(s) \, dt \, ds \right] \tag{1.69}
\]

\[
= \frac{N_0}{2} \int_{-\infty}^{\infty} \varphi_k(t) \cdot \varphi_l(t) \, dt \tag{1.70}
\]

\[
= \frac{N_0}{2} \cdot \delta_{kl} , \text{ QED.} \tag{1.71}
\]
Section 1.1’s MAP-detector development could have replaced \mathbf{y} by $y(t)$ everywhere and the development would have proceeded identically with the tacit inclusion of the time variable t in the probability densities (and also assuming stationarity of $y(t)$ as a random process). The Theorem of Irrelevance would hold with $[\mathbf{y}_1 \mathbf{y}_2]$ replaced by $[\hat{y}(t) \hat{n}(s)]$, as long as the relation (1.19) holds for any pair of time instants t and s. In a non-mathematical sense, the unrepresented noise is useless to the receiver, so there is nothing of value lost in the vector demodulator, even though some of the channel output noise is not represented. The following algebra demonstrates that $\hat{n}(s)$ is irrelevant:

First,

$$E[\hat{n}(s) \cdot \hat{n}(t)] = E \left[\hat{n}(s) \cdot \sum_{l=1}^{N} n_l \cdot \varphi_l(t) \right] = \sum_{l=1}^{N} \varphi_l(t) \cdot E[\hat{n}(s) \cdot n_l] \quad (1.72)$$

and,

$$E[\hat{n}(s) \cdot n_l] = E[(n(s) - \hat{n}(s)) \cdot n_l]$$

$$= E \left[\int_{-\infty}^{\infty} n(s) \cdot \varphi_l(\tau) \cdot n(\tau) d\tau \right] - E \left[\sum_{k=1}^{N} n_k \cdot n_l \cdot \varphi_k(s) \right]$$

$$= \frac{N_0}{2} \int_{-\infty}^{\infty} \delta(s - \tau) \cdot \varphi_l(\tau) d\tau - \frac{N_0}{2} \cdot \varphi_l(s)$$

$$= \frac{N_0}{2} \cdot [\varphi_l(s) - \varphi_l(s)] = 0 \quad (1.76)$$

Second,

$$p_{\mathbf{x}|\hat{\mathbf{y}}(t),\hat{n}(s)} = \frac{p_{\mathbf{x},\hat{\mathbf{y}}(t),\hat{n}(s)}}{p_{\hat{\mathbf{y}}(t),\hat{n}(s)}} = \frac{p_{\mathbf{x},\hat{\mathbf{y}}(t)} \cdot p_{\hat{n}(s)}}{p_{\hat{\mathbf{y}}(t)} \cdot p_{\hat{n}(s)}}$$

$$= \frac{p_{\mathbf{x},\hat{\mathbf{y}}(t)}}{p_{\hat{\mathbf{y}}(t)}} \quad (1.77)$$

Equation (1.80) satisfies the theorem of irrelevance, and thus the receiver need only base its decision on $\hat{y}(t)$, or equivalently, only on the received vector \mathbf{y}. The vector AWGN Channel is equivalent to the continuous-time AWGN channel.

Rule 1.3.1 (The Vector AWGN Channel) The vector AWGN channel is given by

$$\mathbf{y} = \mathbf{x} + \mathbf{n} \quad (1.81)$$

and is equivalent to the channel illustrated in Figure 1.23. The noise vector \mathbf{n} is an N-dimensional Gaussian random vector with zero mean, equal-variance, uncorrelated components in each dimension. The noise distribution is

$$p_{\mathbf{n}}(\mathbf{u}) = (\pi N_0)^{-\frac{N}{2}} e^{-\frac{1}{2N_0} \| \mathbf{u} \|^2} = (2\pi \sigma^2)^{-\frac{N}{2}} e^{-\frac{1}{2\sigma^2} \| \mathbf{u} \|^2} \quad (1.82)$$

Application of $y(t)$ to either the correlative demodulator of Figure 1.20 or to the matched-filter demodulator of Figure 1.21, generates the desired vector channel output \mathbf{y} at the demodulator output. The following section specifies the decision process that produces an estimate of the input message, given the output \mathbf{y}, for the AWGN Channel.
1.3.1.1 Optimum Detection with the AWGN Channel

For the vector AWGN Channel in (1.81),

\[p_y|v|i = p_n(v - x_i), \]

(1.83)

where \(p_n \) is the vector noise distribution in (1.82). Thus for the AWGN Channel, the MAP Decision Rule becomes

\[\hat{m} \Rightarrow m_i \text{ if } e^{-\frac{1}{N_0} \|v - x_i\|^2} \cdot p_x(i) \geq e^{-\frac{1}{N_0} \|v - x_j\|^2} \cdot p_x(j) \quad \forall \ j \neq i, \]

(1.84)

where the common factor of \((\pi N_0)^{-\frac{N}{2}}\) has been canceled from each side of (1.84). As noted earlier, if equality holds in (1.84), then the decision can be assigned to any of the corresponding messages without change in minimized error probability. The ln of (1.84) is the preferred form of the MAP Decision Rule for the AWGN channel:

Rule 1.3.2 (AWGN MAP Detection Rule)

\[\hat{m} \Rightarrow m_i \text{ if } \|v - x_i\|^2 - N_0 \cdot \ln\{p_x(i)\} \leq \|v - x_j\|^2 - N_0 \cdot \ln\{p_x(j)\} \quad \forall \ j \neq i \]

(1.85)

If the channel input messages are equally likely, the natural-log terms on both sides of (1.85) cancel, yielding the AWGN ML Detection Rule:

Rule 1.3.3 (AWGN ML Detection Rule)

\[\hat{m} \Rightarrow m_i \text{ if } \|v - x_i\|^2 \leq \|v - x_j\|^2 \quad \forall \ j \neq i. \]

(1.86)

The ML detector for the AWGN channel in (1.86) has the intuitively appealing physical interpretation that the decision \(\hat{m} = m_i \) corresponds to choosing the data symbol \(x_i \) that is closest, in terms of the Euclidean distance, to the vector received symbol \(y = v \). Without noise, the received vector is \(y = x_i \) the transmitted symbol, but the additive Gaussian noise results in a received symbol most likely in the neighborhood of \(x_i \). The noise’s Gaussian distribution implies the probability of a received point decreases as the distance from the transmitted point increases.

As an example consider the decision regions for binary data transmission over the AWGN Channel illustrated in Figure 1.24. The ML Receiver decides \(x_1 \) if \(y = v \geq 0 \) and \(x_0 \) if \(y = v < 0 \). (One might have guessed this answer without need for theory.) With \(d \) defined as the distance \(\|x_1 - x_0\| \), the decision regions are offset in the MAP detector by \(\sqrt{\frac{N_0}{\pi}} \cdot \ln\{p_x(j)\} / p_x(i) \) with the decision boundary shifting...
towards the data symbol of lesser probability, as illustrated in Figure 1.25. Unlike the ML detector, the MAP detector accounts for the à priori message probabilities.

\[
\|y - x_i\|^2 - N_0 \cdot \ln\{p_x(i)\}
\]

over the \(M\) possible messages, indexed by \(i\). The quantity in (1.87) expands to

\[
\|y\|^2 - 2\langle y, x_i \rangle + \|x_i\|^2 - N_0 \cdot \ln\{p_x(i)\}
\]

Minimization of (1.88) can ignore the \(\|y\|^2\) term. The MAP decision rule then becomes

\[
\hat{m} \Rightarrow m_i \text{ if } \langle y, x_i \rangle + c_i \geq \langle y, x_j \rangle + c_j \quad \forall j \neq i
\]

1.3.1.2 General Receiver Implementation

While the decision regions in the above examples appear simple to describe, an implementation may be more complex. This section investigates general receiver structures and the detector implementation. The MAP detector minimizes the quantity (the quantity \(y\) now replaces \(v\) averting strict mathematical notation, because probability density functions appear less often in the subsequent analysis):

\[
\|y - x_i\|^2 - N_0 \cdot \ln\{p_x(i)\}
\]

over the \(M\) possible messages, indexed by \(i\). The quantity in (1.87) expands to

\[
\|y\|^2 - 2\langle y, x_i \rangle + \|x_i\|^2 - N_0 \cdot \ln\{p_x(i)\}
\]

Minimization of (1.88) can ignore the \(\|y\|^2\) term. The MAP decision rule then becomes

\[
\hat{m} \Rightarrow m_i \text{ if } \langle y, x_i \rangle + c_i \geq \langle y, x_j \rangle + c_j \quad \forall j \neq i
\]

Figure 1.25: Binary MAP detector.

Figure 1.26 illustrates the decision region for a two-dimensional example of the QPSK\(^{24}\) constellation, which uses the same basis functions as the V.32 example (Example 1.2.4), but with \(M = 4\). The constellation’s symbols are all assumed to be equally likely.

Figure 1.26: QPSK decision regions.

\(^{24}\)Quadrature Phase-Shift Keying
where \(c_i \) is the constant (independent of \(y \))

\[
c_i \triangleq \frac{N_0}{2} \cdot \ln\{p_{x_i}(i)\} - \frac{\|x_i\|^2}{2}.
\]

(1.90)

A system design can precompute the constants \(\{c_i\} \) from the transmitted symbols \(\{x_i\} \) and their known probabilities \(p_{x_i}(i) \). The detector thus only needs to implement the \(M \) inner products, \(\langle y, x_i \rangle \). When all the data symbols have the same energy \((\mathcal{E}_x = \|x_i\|^2 \forall i) \) and are equally probable (i.e. MAP = ML), then the constant \(c_i \) is independent of \(i \) and can be eliminated from (1.89).

The ML detector thus chooses the \(x_i \) that maximizes the inner product (or correlation) of the received value for \(y = v \) with \(x_i \) over \(i \).

There exist two common implementations of the MAP receiver in Equation (1.89). The first, shown in Figure 1.27, called a “basis detector,” computes \(y \) using a matched filter demodulator. This MAP receiver computes the \(M \) inner products of (1.89) digitally (an \(M \times N \) matrix multiply with \(y \)), adds the constant \(c_i \) of (1.90), and picks the index \(i \) with maximum result. Finally, a decoder translates the index \(i \) into the desired message \(m_i \). Often in practice, the signal constellation is such (see Section 1.3.6 for examples) that the max-and-decode functionality reduces to simple truncation of each received symbol-vector component.

Figure 1.27: Basis detector \((y(t)) \) would be just \(L_x = N \) parallel signals \(y(t) \) in the MIMO case.

The second demodulator form eliminates Figure 1.27’s matrix multiply by exploiting directly the inner product equivalences between the discrete vectors \(x_i, y \) and the continuous-time functions \(x_i(t) \) and \(y(t) \). That is

\[
\langle y, x_i \rangle = \int_0^T y(t) \cdot x_i(t)dt = \langle y(t), x_i(t) \rangle.
\]

(1.91)

Equivalently,

\[
\langle y, x_i \rangle = y(t) \ast x_i(T - t)|_{t=T}
\]

(1.92)

where \(\ast \) indicates convolution. This type of detector is called a “signal detector” and appears in Figure 1.28.
EXAMPLE 1.3.1 (pattern recognition as a signal detector) Similar to Example 1.4, pattern recognition is a digital signal processing procedure that is used to detect whether a certain signal is present. A specific pattern-recognition application occurs when an aircraft/drone converts pictures of the ground into electrical signals, and these signals then permit analysis to determine the presence of certain objects in the pictures. The Gaussian noise would represent the various imperfections in the camera’s accuracy and any conversion to electrical signals. This is a communication channel in disguise where the two inputs are the usual terrain of the ground and the terrain of the ground including the object to be detected. A signal detector consisting of two filters that are essentially the time reverse of each of these possible input signals, with a comparison of the outputs (after adding any necessary constants), allows detection of the presence of the object or pattern. There are many other examples of pattern recognition in voice/command recognition or authentication, facial recognition, written character scanning, and so on.

The above example/discussion illustrates that many digital-transmission-theory principles are common to other fields of digital signal processing and computer science, and Section 1.7 expands upon this theme.

1.3.1.3 Signal-to-Noise Ratio (SNR) Maximization with a Matched Filter

SNR measures system-performance as the ratio of signal power (message) to unwanted noise power. A discrete (continuous) channel’s output SNR is defined as the ratio of the received signal’s energy (power) to the mean-square noise value (power). The AWGN’s SNR will be the same for both continuous- and discrete-time. Figure 1.29’s matched filter satisfies the SNR maximization property, which the following theorem summarizes:
Theorem 1.3.1 (SNR Maximization) For the system shown in Figure 1.29, the filter \(h(t) \) that maximizes the signal-to-noise ratio at sample time \(T_s \) is given by the matched filter \(h(t) = x(T_s - t) \).

Proof: Compute the SNR at sample time \(t = T_s \) as follows.

\[
\text{Signal Energy} = \left[x(t) \ast h(t) \right]_{t=T_s}^2 = \left[\int_{-\infty}^{\infty} x(t) \cdot h(T_s - t) \, dt \right]^2 = \left[\langle x(t), h(T_s - t) \rangle \right]^2 . \tag{1.94}
\]

The sampled noise at the matched filter output has energy or mean-square

\[
\text{Noise Energy} = E \left[\int_{-\infty}^{\infty} n(t) \cdot h(T_s - t) \, dt \int_{-\infty}^{\infty} n(s) \cdot h(T_s - s) \, ds \right] = \frac{N_0}{2} \int_{-\infty}^{\infty} \delta(t - s) \cdot h(T_s - t) \cdot h(T_s - s) \, dt \, ds . \tag{1.96}
\]

\[
= \frac{N_0}{2} \int_{-\infty}^{\infty} h^2(T_s - t) \, dt . \tag{1.97}
\]

\[
= \frac{N_0}{2} \| h \|^2 . \tag{1.99}
\]

The signal-to-noise ratio, defined as the ratio of the signal power in (1.94) to the noise power in (1.99), equals

\[
\text{SNR} = \frac{2}{N_0} \cdot \frac{\left[\langle x(t), h(T_s - t) \rangle \right]^2}{\| h \|^2} . \tag{1.100}
\]

The “Cauchy-Schwarz Inequality” states that

\[
\left[\langle x(t), h(T_s - t) \rangle \right]^2 \leq \| x \|^2 \| h \|^2 \tag{1.101}
\]

with equality if and only if \(x(t) = k \cdot h(T_s - t) \), where \(k \) is some arbitrary constant. Thus, by inspection, (1.100) is maximized over all choices for \(h(t) \) when \(h(t) = x(T_s - t) \). The filter \(h(t) \) is “matched” to \(x(t) \), and the corresponding maximum SNR (for any \(k \)) is

\[
\text{SNR}_{\text{max}} = \frac{2}{N_0} \cdot \| x \|^2 . \tag{1.102}
\]

An example use of the matched-filter’s SNR-maximization property occurred earlier in Example 1.5’s time-delay estimation, where a single matched filter processes the signal and a sampling device looks for
1.3.2 Error Probability for the AWGN Channel

This section discusses average error-probability computation when the optimum detector incorrectly detects the transmitted message on an AWGN channel. From the previous section, the AWGN channel is equivalent to a vector channel with output given by

\[y = x + n \] \hspace{1cm} (1.103)

The computation of \(P_e \) often assumes that the inputs \(x_i \) are equally likely, or \(p(x(i)) = \frac{1}{M} \). Under this assumption, the optimum detector is the ML detector, which has decision rule

\[\hat{m} \Rightarrow m_i \text{ if } \|v - x_i\|^2 \leq \|v - x_j\|^2 \forall j \neq i \]. \hspace{1cm} (1.104)

The \(P_e \) associated with this rule depends on the signal constellation \(\{x_i\} \) and the noise variance \(N_0^2 \).

Two general invariance theorems in Subsection 1.4.1 facilitate the computation of \(P_e \). The exact \(P_e \),

\[P_e = \frac{1}{M} \cdot \sum_{i=0}^{M-1} P_{e/i} \] \hspace{1cm} (1.105)

\[= 1 - \frac{1}{M} \cdot \sum_{i=0}^{M-1} P_{c/i} \] \hspace{1cm} (1.106)

may be difficult to compute, so convenient and accurate bounding procedures in Subsections 1.4.2 through 1.3.2.4 can alternately approximate \(P_e \).

1.3.2.1 AWGN Invariance to Rotation and Translation

The symbol constellation’s orientation with respect to the coordinate axes and to the origin does not affect the \(P_e \) of the ML detector on the AWGN. This result follows because (1) the error depends only on relative distances between symbols in the symbol constellation, and (2) AWGN is spherically symmetric in all directions. First, the ML receiver’s error probability is invariant to any rotation of the signal constellation, as summarized in the following theorem:

Theorem 1.3.2 (Rotational Invariance) If all the data symbols in a symbol constellation are rotated by an orthogonal transformation, that is \(\bar{x}_i \leftarrow Qx_i \) for all \(i = 0, \ldots, M - 1 \) (where \(Q \) is an \(N \times N \) matrix such that \(QQ^* = Q^*Q = I \)), then the ML receiver’s error probability remains unchanged on an AWGN channel.

Proof: First, an AWGN remains statistically equivalent after rotation by \(Q^* \): A rotated Gaussian random vector is \(\bar{n} = Q^*n \). \(\bar{n} \) is Gaussian since a linear combination of Gaussian random variables remains a Gaussian random variable. A Gaussian random vector is completely specified by its mean and covariance matrix: The mean is \(E[\bar{n}] = 0 \) since \(E[n_i] = 0, \forall i = 0, \ldots, N - 1 \). The covariance matrix is \(E[\bar{n}\bar{n}^*] = Q^*E[nn^*]Q = \frac{N_0}{2}I \). Thus, \(\bar{n} \) is statistically equivalent to \(n \). The channel output for the rotated signal constellation is now \(\bar{y} = \bar{x} + \bar{n} \) as illustrated in Figure 1.30. The corresponding decision rule is based on the distance from the received symbol vector \(\bar{y} \) to the rotated constellation symbol vector(s) \(\bar{x}_i \).

\[\|\bar{y} - \bar{x}_i\|^2 = (\bar{y} - \bar{x}_i)^* (\bar{y} - \bar{x}_i) \] \hspace{1cm} (1.107)

\[= (v - x_i)^* QQ^* (v - x_i) \] \hspace{1cm} (1.108)

\[= \|y - x_i\|^2 \] \hspace{1cm} (1.109)
\(y = x + Q^*n \). Since \(\tilde{n} = Q^*n \) has the same distribution as \(n \), and the distances measured in (1.109) are the same as in the original unrotated symbol constellation, the ML detector for the rotated constellation is the same as the ML detector for the original (unrotated) constellation in terms of all distances and noise variances. Thus, the error probability must be identical. QED.

An example of the QPSK constellation appears in Figure 1.26, where \(N = 2 \). With \(Q \) as a 45° rotation matrix,

\[
Q = \begin{bmatrix}
\cos \frac{\pi}{4} & \sin \frac{\pi}{4} \\
-\sin \frac{\pi}{4} & \cos \frac{\pi}{4}
\end{bmatrix},
\tag{1.110}
\]

then Figure 1.31 shows the rotated constellation and decision regions. From Figure 1.31, clearly the rotation has not changed the detection problem and has only changed the labeling of the axes, effectively giving another equivalent set of orthonormal basis functions. Since rotation does not change the squared length of any data symbols, the average energy also remains unchanged. The invariance depends on the noise components being uncorrelated with one another, and being of equal variance, as in (1.71); for other noise correlations (i.e., \(n(t) \) not white, see Section 1.3.7), rotational invariance does not necessarily hold. Figure 1.32 summarizes rotational invariance. All three constellations in Figures 1.31 and 1.32 have identical \(P_e \) when used with identical AWGN.

Error probability is also invariant to translation by a constant vector amount for the AWGN, because again \(P_e \) depends only on relative distances, and the noise remains unchanged.

Theorem 1.3.3 (Translational Invariance) If all the data symbols in a signal constellation are translated by a constant vector amount, that is \(\bar{x}_i = x_i - a \) for all \(i = 0, ..., M-1 \), then the ML error probability remains unchanged on an AWGN channel.

Proof: Note that the constant vector \(a \) is common to both \(y \) and to \(x \), and thus subtracts from \(\|v - a\| - (x_i - a)\|^2 = \|v - x_i\|^2 \), so (1.104) remains unchanged. QED.

An important use of the Theorem of Translational Invariance is the minimum energy translate of a constellation:
Figure 1.31: QPSK rotated by 45°.

Figure 1.32: Rotational invariance summary.
Definition 1.3.1 (Minimum-Energy Translate) The minimum energy translate of a constellation is defined as that constellation obtained by subtracting the constant vector $E\{x\}$ from each data symbol in the constellation.

The minimum energy translate of a constellation is defined as that constellation obtained by subtracting the constant vector $E\{x\}$ from each data symbol in the constellation.

To show that the minimum energy translate has the minimum energy among all possible translations of the signal constellation, the average energy of the translated signal constellation is written as

$$E_{x-a} = \sum_{i=0}^{M-1} \|x_i - a\|^2 \cdot p_x(i)$$

$$= \sum_{i=0}^{M-1} \left(\|x_i\|^2 - 2\langle x_i, a \rangle + \|a\|^2\right) \cdot p_x(i)$$

$$= E_x + \|a\|^2 - 2\langle E\{x\}, a \rangle$$ \hspace{1cm} (1.112)

From (1.112), the energy E_{x-a} is minimized over all possible translates a if and only if $a = E\{x\}$, so

$$\min_a E_{x-a} = \sum_{i=0}^{M-1} \left[\|x_i - E\{x\}\|^2 \cdot p_x(i)\right] = E_x - |E\{x\}|^2$$ \hspace{1cm} (1.113)

Thus, as transmitter energy (or power) is often a quantity to be preserved, the designer can always translate the signal constellation by $E\{x\}$, to minimize the required energy without affecting performance. (However, there may be practical reasons, such as complexity and synchronization, where some designs avoid this translation.)

1.3.2.2 Union Bounding

Specific examples of calculating P_e appear in the next two subsections. This subsection calculates this error-probability upper bound for N-dimensional binary ($M = 2$) symbols.

Figure 1.24 illustrated binary-symbol decision regions for $N = 1$ dimension on an AWGN channel. If the system has two N-dimensional symbols, a the decision region still bisects the line between those two symbol values. Then ML-detector error probability is the probability that the noise vector n’s component on the line connecting the two data symbols is greater than half the distance along this line. In this case, the noisy received vector y lies in the incorrect decision region, resulting in an error. Since the noise is white Gaussian, its projection in any dimension, in particular on the line segment that connects the two data symbols, has variance $\sigma^2 = \frac{N_0}{2}$, as Theorem 1.3.2’s proof. Thus,

$$P_e = P\{\langle n, \varphi \rangle \geq \frac{d}{2}\}$$ \hspace{1cm} (1.114)

where φ is a unit norm vector along the line between x_0 and x_1 and $d \triangleq \|x_0 - x_1\|$. This error probability is

$$P_e = \int_\frac{d}{2}^\infty \frac{1}{\sqrt{2\pi}\sigma^2} e^{-\frac{1}{2\sigma^2} u^2} du$$

$$= \int_\frac{d}{2\sqrt{N_0}}^\infty \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$$

$$= Q\left[\frac{d}{2\sqrt{N_0}}\right]$$ \hspace{1cm} (1.115)

The Q-function is defined in Appendix B of this chapter, but basically computes the indefinite integral in Equation (1.115). As $\sigma^2 = \frac{N_0}{2}$, (1.116) can also be written

$$P_e = Q\left[\frac{d}{\sqrt{2N_0}}\right]$$ \hspace{1cm} (1.117)
1.3.2.2.1 Minimum Distance

Every signal constellation has an important characteristic known as the minimum distance:

Definition 1.3.2 (Minimum Distance, \(d_{\text{min}}\))

The minimum distance for a constellation with symbol vectors \(\mathbf{x} \triangleq \{\mathbf{x}_i\}_{i=0,...,M-1}\), is \(d_{\text{min}}(\mathbf{x})\) and measures the smallest separation between any two symbols. The argument \((\mathbf{x})\) is often dropped when the specific signal constellation is obvious from the context, thus leaving

\[
d_{\text{min}} \triangleq \min_{i \neq j} \|\mathbf{x}_i - \mathbf{x}_j\| \quad \forall \ i, j.
\]

Equation (1.116) is useful in the following theorem’s proof of ML-detector error-probability bound for any constellation with \(M\) data symbols (on the AWGN Channel):

Theorem 1.3.4 (Union Bound)

An error probability bound for the ML detector on the AWGN Channel, with an \(M\)-point constellation and minimum distance \(d_{\text{min}}\), is

\[
P_e \leq (M - 1) \cdot Q \left(\frac{d_{\text{min}}}{2\sigma} \right).
\]

Proof: The Union Bound defines an “error event” \(\varepsilon_{ij}\) as the event where the ML detector chooses \(\hat{x} = x_j\) while \(x_i\) is the correct transmitted data symbol. The conditional error probability given that \(x_i\) was transmitted is then

\[
P_{e/i} = P \{ \varepsilon_{i0} \cup \varepsilon_{i1} \cup \varepsilon_{i,i-1} \cup \varepsilon_{i,i+1} \cup ... \cup \varepsilon_{i,M-1} \} = P \left(\bigcup_{j=0}^{M-1} \varepsilon_{ij} \right).
\]

Because the error events in (1.120) are mutually exclusive (meaning if one occurs, the others cannot), the probability of the union is the sum of the probabilities, and also bounded by the sum of the noise-component error events (which are not necessarily mutually exclusive because the noise might be so large as to have components in multiple directions to be larger than half the distance)

\[
P_{e/i} = \sum_{j=0}^{M-1} P \{ \varepsilon_{ij} \} \leq \sum_{j=0}^{M-1} P_2(\mathbf{x}_i, \mathbf{x}_j),
\]

where

\[
P_2(\mathbf{x}_i, \mathbf{x}_j) \triangleq P \{ \mathbf{y} \text{ is closer to } \mathbf{x}_j \text{ than to } \mathbf{x}_i \},
\]

because

\[
P \{ \varepsilon_{ij} \} \leq P_2(\mathbf{x}_i, \mathbf{x}_j).
\]

As illustrated in Figure 1.33, \(P \{ \varepsilon_{ij} \}\) is the probability the received vector \(\mathbf{y}\) lies in the shaded decision region for \(\mathbf{x}_j\) given the symbol \(\mathbf{x}_i\) was transmitted.
The incorrect decision region for the probability $P_2(x_i, x_j)$ includes part (shaded red in Figure 1.33) of the region for $P\{\varepsilon_{ik}\}$, which illustrates the inequality in Equation (1.123). Thus, the union bound overestimates $P_{e/i}$ by summing the results of integrating pairwise on possibly overlapping half-planes. Using the result in (1.116),

$$P_2(x_i, x_j) = Q\left(\frac{\|x_i - x_j\|}{2\sigma}\right). \quad (1.124)$$

Substitution of (1.124) into (1.121) results in

$$P_{e/i} \leq \sum_{j=0}^{M-1} Q\left(\frac{\|x_i - x_j\|}{2\sigma}\right), \quad (1.125)$$

and thus averaging over all transmitted symbols

$$P_e \leq \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} Q\left(\frac{\|x_i - x_j\|}{2\sigma}\right) \cdot p_x(i). \quad (1.126)$$

$Q(x)$ is monotonically decreasing in x, and thus since $d_{\text{min}} \leq \|x_i - x_j\|$,

$$Q\left(\frac{\|x_i - x_j\|}{2\sigma}\right) \leq Q\left(\frac{d_{\text{min}}}{2\sigma}\right). \quad (1.127)$$

Substitution of (1.127) into (1.126), and recognizing that d_{min} is not a function of the indices i or j, one finds the desired result

$$P_e \leq \sum_{i=0}^{M-1} (M - 1) \cdot Q\left(\frac{d_{\text{min}}}{2\sigma}\right) \cdot p_x(i) = (M - 1) \cdot Q\left(\frac{d_{\text{min}}}{2\sigma}\right). \quad (1.128)$$

QED.

Since the constellation contains M symbols, the factor $M - 1$ equals the maximum number of neighboring symbols that can be at distance d_{min} from any particular symbol.
1.3.2.2 Examples The union bound can be tight (or exact) in some cases, but it is not always a good approximation to the actual P_e, especially when M is large. Two examples for $M = 8$ show situations where the union bound is a poor approximation to the actual probability of error. These two examples also naturally lead to the “nearest neighbor” bound of the next subsection.

![Figure 1.34: 8 Phase Shift Keying (8PSK).](image)

EXAMPLE 1.3.2 (8PSK) The constellation in Figure 1.34 is often called “eight phase” or “8PSK”. For the maximum likelihood detector, the 8 decision regions correspond to sectors bounded by straight lines emanating from the origin that bisect the circle’s arcs between symbols. The union bound for 8PSK is

$$P_e \leq 7Q \left[\frac{\sqrt{E_x} \cdot \sin(\pi/8)}{\sigma} \right],$$

and $d_{\text{min}} = 2\sqrt{E_x} \cdot \sin(\pi/8)$.

Figure 1.35 magnifies the detection region for one of the 8 data symbols.

![Figure 1.35: 8PSK P_e bounding.](image)

By symmetry the analysis would proceed identically, no matter which point is chosen, so $P_{e/i} = P_e$. An error can occur if the AWGN component along either of the two directions shown is greater than $d_{\text{min}}/2$. These two events are not mutually exclusive, although the variance of the noise along either vector (with unit vectors along each defined as φ_1 and φ_2) is σ^2. Thus,

$$P_e = P\{(\| < n, \varphi_1 > \| > \frac{d_{\text{min}}}{2}\} \cup \{\| < n, \varphi_2 > \| > \frac{d_{\text{min}}}{2}\} \}$$

$$\leq P\{(n_1 > \frac{d_{\text{min}}}{2}\} + P\{(n_2 > \frac{d_{\text{min}}}{2}\}$$

$$\leq 1.130$$

$$\leq 1.131$$

52
\[P\{|\|n_1\| > \frac{d_{\text{min}}}{2}\} \leq P_e, \]

(1.133)

yielding a lower bound on \(P_e \), thus the upper bound in (1.132) is tight. The bound in (1.132) overestimates the \(P_e \) by integrating the two half planes, which overlap as Figure 1.34 depicts. The lower bound of (1.133) only integrates over one half plane that does not completely cover the shaded region. The multiplier in front of the Q function in (1.132) equals the number of “nearest neighbors” for any one data symbol in the 8PSK constellation.

The following second example illustrates problems in applying the union bound to a 2-dimensional signal constellation with 8 or more symbols on a rectangular grid (or lattice):

EXAMPLE 1.3.3 (8AMPM) Figure 1.36 illustrates the 8-point “8AMPM” (amplitude-modulated phase modulation) constellation, or “8 Square” (8SQ). The union bound for \(P_e \) yields

\[P_e \leq 7 \cdot Q\left[\sqrt{\frac{2}{\sigma}}\right]. \]

(1.134)

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{8AMPM_signal_constellation.png}
\caption{8AMPM signal constellation.}
\end{figure}

By rotational invariance, Figure 1.37’s rotated 8AMPM constellation has the same \(P_e \) as Figure 1.36’s unrotated constellation. The decision boundaries shown are pessimistic at the constellation’s corners, so the \(P_e \) derived from them will be an upper bound. For notational brevity, let \(Q \triangleq Q[d_{\text{min}}/2\sigma] \). The probability of a correct decision for 8AMPM is

\[P_c = \sum_{i=0}^{7} P_{c/i} \cdot p_x(i) = \sum_{i \neq 1,4} P_{c/i} \cdot \frac{1}{8} + \sum_{i=1,4} P_{c/i} \cdot \frac{1}{8} \]

(1.135)
Figure 1.37: 8AMPM rotated by 45° with decision regions.

\[
\begin{align*}
> & \quad \frac{6}{8}(1 - Q)(1 - 2Q) + \frac{2}{8}(1 - 2Q)^2 \\
= & \quad \frac{3}{4}(1 - 3Q + 2Q^2) + \frac{1}{4}(1 - 4Q + 4Q^2) \\
= & \quad 1 - 3.25Q + 2.5Q^2.
\end{align*}
\]
(1.136)
(1.137)
(1.138)

Thus \(P_e \) is upper bounded by

\[
P_e = 1 - P_c < 3.25 \cdot Q \left[\frac{d_{\min}}{2\sigma} \right],
\]
(1.139)

which is tighter than the union bound in (1.134). As \(M \) increases for constellations like 8AMPM, the accuracy of the union bound degrades, since the union bound calculates \(P_e \) by pairwise error events and thus redundantly includes the probabilities of overlapping half-planes. It is desirable to produce a tighter bound. The multiplier on the Q-function in (1.139) is the average number of nearest neighbors (or decision boundaries) = \(\frac{1}{4}(4+3+3+3) = 3.25 \) for the constellation. The next subsection formalizes this rule of thumb as the Nearest-Neighbor Union bound (NNUB), which practicing designers often use.

1.3.2.3 The Nearest Neighbor Union Bound

The Nearest Neighbor Union Bound (NNUB) provides a tighter bound on a constellation’s associated error probability by lowering the multiplier of the Q-function. The original union bound’s factor \((M - 1)\) is often too large for accurate performance prediction as in the preceding section’s two examples. The NNUB requires more computation. However, it is easily approximated.

The NNUB’s development uses the average number of nearest neighbors:

Definition 1.3.3 (Average Number of Nearest Neighbors) A constellation’s average number of nearest neighbors, \(N_e \) is

\[
N_e \triangleq \sum_{i=0}^{M-1} N_i \cdot p_x(i),
\]
(1.140)
where \(N_i \) is the symbol \(x_i \)'s number of neighboring constellation symbols, that is the number of other symbol vectors sharing a common decision region boundary with \(x_i \). Designers often approximate \(N_e \) as
\[
N_e \approx M - 1 \sum_{i=0}^{M-1} \hat{n}_i \cdot p_x(i),
\]
where \(\hat{n}_i \) is the number of symbols at minimum distance from \(x_i \), whence the often used name “nearest” neighbors. This approximation is often very tight and facilitates computation of \(N_e \) with complex signal constellation (i.e., coded systems - see Chapters 2, 8, and beyond).

Thus, \(N_e \) also measures the average number of decision-region boundaries surrounding any constellation symbol vector. These decision boundaries can be at different distances from any given symbol and thus might best not be called “nearest.” \(N_e \) is used in the following theorem:

Theorem 1.3.5 (Nearest Neighbor Union Bound) The ML detector’s error probability for an \(M \)-point signal constellation on the AWGN channel with minimum distance \(d_{\text{min}} \) satisfies the bound
\[
P_e \leq N_e \cdot Q \left[\frac{d_{\text{min}}}{2\sigma} \right].
\]

In the case that \(N_e \) is approximated by counting only “nearest” neighbors, then the NNUB approximates the symbol-error probability, and is not necessarily an upper bound.

Proof: For each symbol, the distance to each decision-region boundary must be at least \(d_{\text{min}}/2 \). The error probability for point \(x_i \), \(P_{e/i} \) satisfies the union bound
\[
P_{e/i} \leq N_i \cdot Q \left[\frac{d_{\text{min}}}{2\sigma} \right].
\]

Thus,
\[
P_e = \sum_{i=0}^{M-1} P_{e/i} \cdot p_x(i) \leq Q \left[\frac{d_{\text{min}}}{2\sigma} \right] \sum_{i=0}^{M-1} N_i \cdot p_x(i) = N_e \cdot Q \left[\frac{d_{\text{min}}}{2\sigma} \right].
\]

QED.

The previous Examples 1.3.2 and 1.3.3 show that the \(Q \)-function multiplier in each case is exactly \(N_e \) for that constellation. Chapters 2 and 8 explore complex constellations with coding and larger \(N \) and then often approximate number of nearest neighbors as only those neighbors at minimum distance, so \(N_e \) is then approximately (1.141), no longer then a strict upper bound.

1.3.2.4 Alternative Performance Measures

The optimum receiver design minimizes the symbol error probability \(P_e \). Other closely related performance measures also find use. An important useful measure is the **Bit Error Rate**. Most digital communication systems encode the message set \(\{m_i\} \) into bits. Thus, their analysis computes the average number of bit errors. The average bit-error probability will depend on the constellation-symbols’ specific binary labelings. The quantity \(n_b(i, j) \) denotes the number of bit errors corresponding to a symbol error when the detector incorrectly chooses \(m_j \) instead of \(m_i \), while \(P(\varepsilon_{ij}) \) denotes the corresponding symbol-error probability.

The bit-error rate \(P_b \) obeys the following bound:
Definition 1.3.4 (Average Bit Error Rate) The average bit error rate is

\[P_b \triangleq \sum_{i=0}^{M-1} \sum_{j \neq i} p_x(i) \cdot P\{\varepsilon_{ij}\} \cdot n_b(i, j) \] (1.145)

where \(n_b(i, j) \) is the number of bit errors for the particular choice of encoder when symbol \(i \) is erroneously detected as symbol \(j \). This quantity, despite the label using \(P \), is not strictly a probability.

The bit-error rate will always be approximated for the AWGN in this text by:

\[P_b \approx \sum_{i=0}^{M-1} \sum_{j=1}^{N_i} p_x(i) \cdot P\{\varepsilon_{ij}\} \cdot n_b(i, j) \] (1.146)

\[\leq Q \left[\frac{d_{\text{min}}}{2\sigma} \right] \cdot \sum_{i=0}^{M-1} p_x(i) \sum_{j=1}^{N_i} n_b(i, j) \]

\[P_b \approx Q \left[\frac{d_{\text{min}}}{2\sigma} \right] \cdot \sum_{i=0}^{M-1} p_x(i) \cdot n_b(i) \]

\[\approx N_b \cdot Q \left[\frac{d_{\text{min}}}{2\sigma} \right] \] (1.147)

where

\[n_b(i) \triangleq \sum_{j=1}^{N_i} n_b(i, j) \] , (1.148)

and the Average Total Bit Errors per Error Event, \(N_b \), is:

\[N_b \triangleq \sum_{i=0}^{M-1} p_x(i) \cdot n_b(i) \] . (1.149)

An expression similar to the NNUB for \(P_b \) is

\[P_b \approx N_b \cdot Q \left[\frac{d_{\text{min}}}{2\sigma} \right] \] , (1.150)

where the approximation comes from Equation (1.146), which is an approximation because of the reduction in the sum’s number of included terms over other symbols. This approximation’s accuracy is good as long as those terms corresponding to distant neighbors (with distance \(\geq d_{\text{min}} \)) have small value in comparison to nearest neighbors, which is a reasonable assumption for good constellation designs.

The bit-error rate is sometimes a more uniform performance measure because it is independent of \(M \) and \(N \). On the other hand, \(P_e \) is a symbol-error probability (with block length \(N \)) and can correspond to more than one bit in error (if \(M > 2 \)) over \(N \) dimensions. Both \(P_e \) and \(P_b \) depend on the same distance-to-noise ratio (the argument of the Q function). While the notation for \(P_b \) commonly appears with a \(P \), the bit-error rate is not a probability and could exceed unity in value in aberrant cases. A better measure that is a probability is to normalize the bit-error rate by the number of bits per symbol: Normalization of \(P_b \) produces a probability measure because it is the average number of bit errors divided by the number of bits over which those errors occur - this probability is the desired average bit-error probability.
Lemma 1.3.2 (Average bit-error probability \bar{P}_b.) The average probability of bit error is defined by
\[\bar{P}_b = \frac{P_b}{b} . \] (1.151)

The corresponding average total number of bit errors per bit is
\[\bar{N}_b = \frac{N_b}{b} . \] (1.152)

The average bit-error rate can exceed one, but the average bit-error probability never exceeds one.

Furthermore, P_e comparisons between systems with different dimensionality are not fair (for instance to compare a 2B1Q system operating at $P_e = 10^{-7}$ against a multi-dimensional design consisting of 10 successive 2B1Q dimensions decoded jointly as a single symbol also with $P_e = 10^{-7}$, the latter system really has 10^{-8} errors per dimension and so is better.) A more fair measure of symbol-error probability normalizes by the system’s dimensionality (the number of symbol dimensions) to compare systems with different block lengths.

Definition 1.3.5 (Normalized Error Probability \bar{P}_e.) The normalized error probability is
\[\bar{P}_e = \frac{P_e}{N} . \] (1.153)

The normalized average number of nearest neighbors is:

Definition 1.3.6 (Normalized Number of Nearest Neighbors) The normalized number of nearest neighbors, \bar{N}_e, for a signal constellation is
\[\bar{N}_e = \sum_{i=0}^{M-1} \frac{N_i}{N} \cdot p_x(i) = \frac{N_e}{N} . \] (1.154)

Thus, the NNUB is
\[\bar{P}_e \leq \bar{N}_e \cdot Q\left(\frac{d_{\min}}{2\sigma}\right) . \] (1.155)

EXAMPLE 1.3.4 (8AMPM) The average number of bit errors per error event for 8AMPM using the octal labeling indicated by the subscripts in Figure 1.36 is computed by
\[N_b = \sum_{i=0}^{7} \frac{1}{8} n_b(i) \]
\[= \frac{1}{8} \cdot [(1 + 1 + 2) + (3 + 1 + 2 + 2) + (2 + 1 + 1) + (1 + 2 + 3) + (3 + 2 + 2 + 1) + (1 + 1 + 2) + (3 + 1 + 2) + (1 + 2 + 1)] \]
\[= \frac{44}{8} = 5.5 . \] (1.159)
Then

\[P_b \approx 5.5 \cdot Q \left[\frac{d_{\min}}{2\sigma} \right]. \quad (1.160) \]

Also,

\[\bar{N}_e = \frac{3.25}{2} = 1.625 \quad (1.161) \]

so that

\[\bar{P}_e \leq 1.625 \cdot Q \left[\frac{d_{\min}}{2\sigma} \right], \quad (1.162) \]

and

\[\bar{P}_b \approx \frac{5.5}{3} \cdot Q \left[\frac{d_{\min}}{2\sigma} \right]. \quad (1.163) \]

Thus the bit-error rate is somewhat higher than the normalized symbol-error probability.

Careful assignment of bits to symbols can reduce the average bit-error rate slightly.

1.3.2.5 Block Error-Rate Measures

Higher-level communication-system design may use message-error counts within packets of several messages cascaded into a larger message. An entire packet may be somewhat useless if any part of it is in error. Thus, a symbol from this analysis perspective may be the entire message packet. The “block-” or “packet-” error probability, \(P_{e,\text{block}} \), is truly identical to the symbol-error probability already analyzed as long as the entire packet is a single symbol. Generally packer-error-rate measures are examples of Quality of Service (QoS) measurement. QoS measures may include also include the actual data rate for a given performance level, system outages (total loss of connectivity for some time period), and the delay in modulation and encoding. This subsection focuses only on error measures.

If a packet contains \(B \) bits, each of which independently has an average bit-error probability \(\bar{P}_b \), then the packet-error probability is approximately \(B \cdot \bar{P}_b \). For example, if the packet-error probability is \(10^{-7} \) and there are 125 bytes per packet, or 1000 bits per packet, then the average bit-error probability is as low as \(10^{-10} \). Low \(P_{e,\text{block}} \) is thus a more stringent criterion on the detector performance than is \(\bar{P}_b \). Nonetheless, analysis can proceed exactly as in this section. As \(B \) increases, the approximation above of \(P_{e,\text{block}} = B \cdot \bar{P}_b \) can become inaccurate as per below.

Telecommunications systems often use an **errd second** to measure performance. An errd second is any second in which any bit error occurs. Obviously, fewer errd seconds is better. A given fixed number of errd seconds translates into increasingly lower average bit-error probability as the data rate increases.

An **error-free second** is a second in which no error occurs. If a second contains \(B \) independent bits, then the exact probability of an error-free second is

\[P_{e,fs} = (1 - \bar{P}_b)^B \quad (1.164) \]

while the exact probability of an errd second is

\[P_{es} = 1 - P_{e,fs} = \sum_{i=1}^{B} \binom{B}{i} (1 - \bar{P}_b)^{B-i} \bar{P}_b^i. \quad (1.165) \]

Dependency between bits and bit errors will change the above formulas’ exact nature, but analysis often ignores any such dependency. More common in telecommunications is the derived concept of **percentage error-free seconds**, which is the percentage of seconds that are error free. Thus, if a detector has \(\bar{P}_b = 10^{-7} \) and the data rate is 10 Mbps, then one might naively guess that almost every second contains errors according to \(P_e = B \cdot \bar{P}_b \), and the percentage of error-free seconds is thus very low. To be exact, \(P_{e,fs} = (1 - 10^{-7})^{10^7} = .368 \), so that the link has 36.8% error-free seconds, so actually about 63% of the seconds have errors. Typically large telecommunications networks strive for **five nines** reliability, which translates into 99.999% error-free seconds. At 10 Mbps, this means that the detector has \(\bar{P}_b = 1 - e^{10^{-7} \ln(99999)} = 2.3 \cdot 10^{-12} \). At lower data rates, five nines is less stringent on the bit-error probability.
Advanced data networks, often designed for $P_b > 10^{-12}$ operate with external “error detection and retransmission” protocols. Retransmission causes delay that may not be acceptable for the data network, at least at the physical layer. Later chapters’ more sophisticated coding methods provide means to reduce error probability within delay limits through Chapter 2’s redundancy, which really means somehow increasing the number of dimensions used but minimally so for system objectives. In any case, the average symbol- and bit-error probabilities are often fundamental to all other performance measures and can be used by the serious communication designer to evaluate system performance carefully.

1.3.3 General Classes of Constellations and Modulation

This subsection describes three constellation classes (and sometimes associated modulation) that abound in digital data transmission. This subsection applies throughout to any single spatial channel, or equivalently to 1 transmit antenna and 1 receive antenna in wireless; the same analysis will however identically apply for each spatial path in a MIMO system. Each of these three classes represent different geometric approaches to constellation construction. Three successive subsections examine the usual basis-function choice and constellation class and then develop corresponding general expressions for the average error probability P_e for the AWGN channel. Subsection 1.3.3.2 discusses cubic constellations (Section 1.3.6 also investigates some important extensions to the cubic constellations). Subsection 1.3.3.6 examines orthogonal constellations, while Subsection 1.3.3.7 studies circular constellations.

Constellation and modulation comparison requires measures. Modulation’s cost depends upon transmitted power. Time units can translate to a number of dimensions, given a certain system bandwidth, so the energy per dimension is essentially a power measure. Given a wider bandwidth, the same time unit and power corresponds to proportionately more dimensions, but a lower power spectral density. While somewhat loosely defined, a system with symbol period T and bandwidth W, has a number of dimensions available for signal construction that is

$$N = 2 \cdot W \cdot T \text{ dimensions.} \quad (1.166)$$

The reasons for this approximation will become increasingly apparent, but all this subsection’s methods follow this simple rule with (reasonable and straightforward bandwidth definition). Field systems all follow Equation (1.166), or have fewer dimensions than this practical maximum, even though it may be possible to construct signal sets with slightly more dimensions theoretically. The number of dimensions in any case is a combined measure of the system resources of bandwidth and time - thus, fair comparisons normalize performance measures and energy by N. The data rate concept thus generalizes to the number of bits per dimension:

<table>
<thead>
<tr>
<th>Definition 1.3.7 (Average Number of Bits Per Dimension)</th>
<th>The average number of bits per dimension, \bar{b}, for a signal constellation x, is</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{b} \triangleq \frac{b}{N}$</td>
<td></td>
</tr>
</tbody>
</table>

The related previously defined quantity, data rate, is

$$R = \frac{b}{T} \quad . \quad (1.168)$$

Using (1.166), the quantity

$$2\bar{b} = \frac{R}{W} \quad , \quad (1.169)$$

It is theoretically not possible to have finite bandwidth and finite time extent, but in practice this can be approximated closely, as Chapter 3 will illustrate.
is the modulation and constellation method’s spectral efficiency. Transmission engineers use spectral efficiency to compare designs (how much data rate per unit of bandwidth). Spectral efficiency measures in the unit of “bits/second/Hz,” which is really a measure of double the number of bits/dimension through Equation 1.169. Engineers often abbreviate the term bits/second/Hz to say bits/Hz, which is an (unfortunately) confusing term because the units are incorrect but instead abbreviate bits/s/Hz. Good designers automatically translate the verbal abbreviation bits/Hz to the correct units and interpretation, bits-per-second/Hz, or simply double the number of bits/dimension. An assumption in (1.169) is that \(N = 2WT \), which is only true when \(L = 1 \) - that is there is no MIMO in use. When there are \(L \) parallel spatial channels in use, the spectral efficiency will be the sum of the spectral efficiencies of all \(L \) subchannels, essentially meaning that free spatial dimensions improve spectral efficiency. Usually this MIMO number is just \(L \cdot 2\bar{b} \), but \(\bar{b}_{\text{ave}} \) can be defined as \(1/L \cdot \sum_{l=1}^{L} \bar{b}_l \) across \(L \) spatial channels and then the MIMO spectral efficiency is \(LB_{\text{ave}} \).

As with data rate and \(\bar{b} \), power \(P = \mathcal{E}/T \) also generalizes to energy per dimension:

Definition 1.3.8 (Average Energy Per Dimension) The average energy per dimension, \(\mathcal{E}_x \), for a signal constellation \(x \), is

\[
\mathcal{E}_x = \frac{\mathcal{E}_x}{N}.
\]

(1.170)

A previously defined and related quantity is the average power,

\[
P_x = \frac{\mathcal{E}_x}{T}.
\]

(1.171)

Clearly \(N \) cannot exceed the actual number of constellation dimensions, but the constellation may require fewer dimensions for a complete representation. For example Figure 1.16’s two-dimensional constellation reduces to only one one dimension by 45-degree rotation. The average power, which was also defined earlier, is a scaled quantity, but consistently defined for all constellations. In particular, the normalization of basis functions often absorbs gain into the signal constellation definition that may tacitly conceal complicated calculations based on transmission-channel impedance, load matching, and various non-trivially calculated analog effects. These effects can also be absorbed into band-limited channel models as is the case in Chapters 2, 3, 4, 10 and ??.

The energy per dimension allows the comparison of constellations with different dimensionality. The smaller the \(\mathcal{E}_x \) for a given \(P_x \) and \(\bar{b} \), the better the design. The concatenation of two successively transmitted \(N \)-dimensional signals taken from the same \(N \)-dimensional signal constellation as a single \(2N \)-dimensional signal causes the resulting \(2N \)-dimensional constellation, formed as a Cartesian product of the constituent \(N \)-dimensional constellations, to have the same average energy per dimension as the \(N \)-dimensional constellation. Thus, simple concatenation of a constellation with itself does not improve the design. However, Chapter 2 shows that careful packing of signals in increasingly larger dimensional signals sets can lead to a reduction in the required energy per dimension to transmit a given message set.

The average power is the usual measure of energy per unit time and is useful when sizing a modulator’s power requirements or in determining scale constants for analog filter/driver circuits in the actual implementation. The power can be set equal to the square of the voltage over the load resistance.

The noise energy per dimension for an \(N \)-dimensional AWGN channel is

\[
\sigma^2 = \frac{\sum_{l=1}^{N} \sigma_l^2}{N} = \sigma^2 = \frac{N_0}{2}.
\]

(1.172)

AWGN is inherently infinite dimensional; but the theorem of irrelevance states that error-probability calculation need only consider those noise components in the same \(N \) dimensions as the constellation.

The previously defined SNR can now also be written for the AWGN as
Definition 1.3.9 (AWGN Channel SNR) The SNR is

\[\text{SNR} = \frac{\bar{E}_x}{\sigma^2} \quad (1.173) \]

The UB and NNUB show that a constellation’s AWGN performance depends on the minimum distance between any two of its symbol vectors. Increasing a particular constellation’s intra-symbol distance increases the constellation’s average energy per dimension. The “Constellation Figure of Merit [3] combines the energy per dimension and the minimum-distance measures:

Definition 1.3.10 (Constellation Figure of Merit - CFM) The constellation figure of merit, \(\zeta_x \), is

\[\zeta_x = \frac{\left(\frac{d_{\text{min}}^2}{\bar{E}_x} \right)}{\bar{E}_x} \quad , \quad (1.174) \]

a unit-less quantity, defined only when \(\bar{b} \geq 1 \).

The CFM \(\zeta_x \) measures constellation quality for AWGN-channel use. A higher CFM \(\zeta_x \) generally results in better performance. The CFM should only be used to compare systems with equal numbers of bits per dimension \(b = \bar{b} / N \), but can be used to compare systems of different dimensionality.

A different measure, known as the “energy per bit,” measures performance in systems with low average bit rate of \(b \leq 1 \) (see Chapter 10).

Definition 1.3.11 (Energy Per Bit) A constellation’s energy per bit, \(\mathcal{E}_b \) is:

\[\mathcal{E}_b = \frac{\bar{E}_x}{b} = \frac{\bar{E}_x}{\bar{b}} \quad . \quad (1.175) \]

This measure is only defined when \(\bar{b} \leq 1 \) and has no meaning in other contexts. Energy/bit may have intuitive appeal to energy conservationists, but it can hide misuse of other system resources like bandwidth or time, which may lead to energy being lost overall, unless \(\bar{b} \leq 1 \).

Definition 1.3.12 (margin) A transmission system’s margin at error probability \(P_e \) is the amount by which the the Q-function argument can reduce while retaining \(P_e \).

Transmission designers often quote margins to specify a confidence level against unusual (basically non-stationary) noise and/or signal-attenuation increases. Chapters 2 and 4 investigate margin further, while an example appears here.

EXAMPLE 1.3.5 (Margin in DSL) Digital Subscriber Line systems deliver 100’s of kilobits to Gigabit data rates over telephone lines and use sophisticated adaptive modulation systems as in Chapters 4 and 5. The two modems are located at the two telephone-line ends, edge (where fiber ends) and customer premise. DSLs error probabilities follow the NNUB

\[^{27}\text{Higher speeds of course occur on shorter line lengths generally.} \]
The expression $N_e \cdot Q(d_{\min}/2\sigma)$. Telephone-line intermittent noise-variance changes can be unpredictable because they sense everything from other phone lines’ signals to radio signals to refrigerator doors and fluorescent and other lights as noise. DSL standards consequently mandate a 6dB margin at $P_e = 10^{-7}$ to help the customer enjoy stable service. This 6 dB essentially allows performance to be degraded by a combined factor of 4 in increased noise before some more significant corrective action need occur.

1.3.3.1 Fair Comparisons

Two transmission systems’ fair comparison requires consideration of the following 5 parameters:

1. data rate $R = b/T$,
2. power \mathcal{E}_x/T,
3. total bandwidth W,
4. total time or symbol period T, and
5. probability of error \bar{P}_b (or P_e).

(For MIMO systems, the number of parallel channels should be held the same also.)

Any fair comparison thus holds 4 of the 5 parameters constant while varying the 5th. However, a simplification can be achieved with dimensionality as the normalizer instead of W and T. In this case, a fair comparison uses

1. bits per dimension \bar{b},
2. energy per dimension $\bar{\mathcal{E}}_x$, and
3. error probability per dimension (or \bar{P}_e).

Any two of these 3 can be held constant and the 3rd compared. Transmission history is replete with examples of engineers (who should have known better) not keeping 4 of the 5 parameters, or the simpler 2 of the 3 normalized parameters, constant before comparing the last. The dimensional-normalization simplifies a fair comparison. The earlier CFM ζ_x presumes \bar{b} fixed and then specifies the ratio of d_{\min}^2 to $\bar{\mathcal{E}}_x$, essentially holding $\bar{\mathcal{E}}_x$ fixed and looking at \bar{P}_e (equivalent to d_{\min}^2 if nearest neighbors are ignored on the AWGN). The normalization essentially prevents an excess of symbol period or bandwidth from letting one modulation method appear better than another, tacitly including the third and fourth parameters (bandwidth and symbol period) from the parameter list in a fair comparison.

The CFM – when it is well defined – permits fair comparison if the \bar{P}_e is held constant, because essentially this ratio is of a function of \bar{b} and $\bar{\mathcal{E}}_x$ (so in effect ζ_x holds \bar{b} constant relative to normalized energy). However, it is best in general to use the 3 quantities and directly hold 2 fixed while comparing the third.

1.3.3.2 Cubic Constellations

Cubic constellations find common use on simple data communication channels. Some cubic-constellation examples appear in Figure 1.38 for $N = 1$, 2, and 3. A cubic constellation maps $N = b$ bits sequentially into their corresponding basis-vector components in N successive dimensions. All constellation dimensions have the same scaling. Cubic constellations may have any translation or rotation in the N-dimensional space they occupy.

The simplest cubic constellation appears in Figure 1.38, where $N = b = \bar{b} = 1$. This constellation is known as “binary signaling”, since only two possible signals are transmitted using one basis function $\varphi_1(t)$. Several binary examples follow.
1.3.3.3 Binary Antipodal Constellations

Binary antipodal constellations have two possible $x = x_1$ values that are equal in magnitude but opposite in sign, e.g. $x_1 = \pm \frac{d}{2}$. As for all binary signaling methods, the average error probability is

$$P_e = P_b = Q \left[\frac{d_{\text{min}}}{2\sigma} \right].$$ (1.176)

The CFM for binary antipodal signaling equals $\zeta_x = (d/2)^2/[(d/2)^2] = 1$.

Particular binary-antipodal examples differ only in their basis-function choices, $\varphi_1(t)$, and have the same analysis. These basis functions may include “Nyquist” pulse-shaping waveforms to avoid intersymbol interference, as in Chapter 3. Besides the time-domain shaping, the basis function $\varphi_1(t)$ specifies the resultant modulated waveform’s power spectral density. Thus, different basis functions may use different bandwidths, and so fair comparison rules need application.

Definition 1.3.13 (Binary Phase Shift Keying) Binary Phase Shift Keying (BPSK) uses a sinusoidal basis function to modulate the data-symbol sequence $\{\pm \sqrt{E}x\}$.

$$\varphi_1(t) = \begin{cases} \sqrt{\frac{2}{T}} \sin \frac{2\pi t}{T} & 0 \leq t \leq T \\ 0 & \text{elsewhere} \end{cases}$$ (1.177)

This representation uses the minimum number of basis functions $N = 1$ to represent BPSK, rather than $N = 2$ as in Example 1.2.2.
Definition 1.3.14 (Bipolar (NRZ) transmission) Bipolar signaling, also known as “baseband binary” or “Non-Return-to-Zero (NRZ)” signaling, uses a square pulse to modulate the data symbols \(\{ \pm \sqrt{E_x} \} \).

\[
\varphi_1(t) = \begin{cases}
\frac{1}{\sqrt{T}} & 0 \leq t \leq T \\
0 & \text{elsewhere}
\end{cases}
\quad (1.178)
\]

NRZ transmission sequences may contain long runs of the same bit result in a constant output signal, with no transitions until the bit changes. Since Chapter 6’s timing recovery circuits usually require some transitions, Manchester or BPL modulation function choice with binary-antipodal constellations guarantees a transition in the middle of each bit (or symbol) period \(T \):

Definition 1.3.15 (Manchester Coding (Bi-Phase Level)) / Manchester Coding, also known as “biphase level” (BPL) or, in magnetic and optical recording, as “frequency modulation (FM),” uses a sequence of two opposite phase square pulses to modulate each data symbol. The basis function is thus:

\[
\varphi_1(t) = \begin{cases}
\frac{1}{\sqrt{T}} & 0 \leq t < T/2 \\
-\frac{1}{\sqrt{T}} & T/2 \leq t < T \\
0 & \text{elsewhere}
\end{cases}
\quad (1.179)
\]

The modulated signal’s power spectral density is proportional to the magnitude squared of the Fourier transform \(\Phi_1(f) \) of the pulse \(\varphi_1(t) \). The NRZ square pulse’s Fourier transform is a sinc function with zero crossings spaced at \(\frac{1}{T} \) Hz. Equation (1.179)’s BPL basis function requires approximately twice the bandwidth of Equation (1.178)’s NRZ basis function, because the BPL base function’s Fourier transform is a sinc function with zero crossings spaced at \(\frac{2}{T} \) Hz. Similarly BPSK requires double NRZ’s bandwidth. Both BPSK and BPL are “rate 1/2” since \(\bar{b} = \frac{1}{2} \), and thus BPSK’s spectral efficiency is 1 bit/s/Hz. This means that BPSK and BPL for the same bandwidth, permit only half the data rate of NRZ, which has a spectral efficiency of 2 bits/s/Hz, or equivalently \(\bar{b} = 1 \).

For the AWGN channel using binary antipodal signaling, Subsection 1.1.7’s Bhattacharya Bound for this memoryless channel is with \(N \) successive uses and input messages that differ in \(d \) positions:

\[
P\{ \varepsilon_{m\hat{m}} \} \leq \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi \sigma^2}} \int_{-\infty}^{\infty} e^{-\frac{1}{2\sigma^2}(y_n-x_{m,n})^2 - \frac{\bar{E}_x}{4\sigma^2}(y_n-x_{m,n})^2} dy_n \\ = \prod_{n=1}^{d_H} \frac{1}{\sqrt{2\pi \sigma^2}} \int_{-\infty}^{\infty} e^{-\frac{1}{2\sigma^2}y^2} dy_n \cdot e^{-d_H \frac{\bar{E}_x}{2\sigma^2}}
\quad (1.180)
\]

1.3.3.4 On-Off Keying (OOK)

Direct-detection optical data transmission uses On-Off Keying. So does most digital circuits in “gate-to-gate,” uses the same basis function as NRZ.

\[
\varphi_1(t) = \begin{cases}
\frac{1}{\sqrt{T}} & 0 \leq t \leq T \\
0 & \text{elsewhere}
\end{cases}
\quad (1.183)
\]

Unlike bipolar transmission, however, one of the levels for \(x_1 \) is zero, while the other is nonzero (\(\sqrt{2\bar{E}_x} \)). Because of the asymmetry, this method includes a DC offset, i.e. a nonzero mean value. The CFM is
ζ = .5, and thus OOK is 3 dB inferior to any type of binary antipodal transmission. The comparison between signal constellations is 10\log_{10} [\zeta_{\text{OOK}}/\zeta_{\text{NRZ}}] = 10\log_{10}(0.5) = -3 \text{ dB}.

As for any binary signaling method, OOK has

\[P_e = P_b = Q \left(\frac{d_{\text{min}}}{2\sigma} \right). \]

1.3.3.5 Vertices of a Hypercube (Block Binary)

Binary signaling in one dimension generalizes to the corners of a hypercube in \(N \)-dimensions, hence the name “cubic constellations.” The hypercubic constellations all transmit \(\bar{b} = 1 \) bit per dimension. For two dimensions, the most common block-binary modulation is QPSK:

1.3.3.5.1 Quadrature Phase Shift Keying (QPSK)

QPSK’s two-dimensional basis functions are

\[\varphi_1(t) = \begin{cases} \sqrt{\frac{E}{T}} \cdot \cos \frac{2\pi t}{T} & 0 \leq t \leq T \\ 0 & \text{elsewhere} \end{cases} \]

\[\varphi_2(t) = \begin{cases} \sqrt{\frac{E}{T}} \cdot \sin \frac{2\pi t}{T} & 0 \leq t \leq T \\ 0 & \text{elsewhere} \end{cases} \]

The transmitted signal is a linear combination of both an inphase (cos) component and a quadrature (sin) component. The four possible data symbol vectors are

\[[x_1 \ x_2] = \begin{cases} \sqrt{\frac{E}{2}} \cdot [-1 - 1]' \\ \sqrt{\frac{E}{2}} \cdot [-1 + 1]' \\ \sqrt{\frac{E}{2}} \cdot [+1 - 1]' \\ \sqrt{\frac{E}{2}} \cdot [+1 + 1]' \end{cases} \]

The additional basis function does not require any extra bandwidth with respect to BPSK, and the average energy \(E_{\text{x}} \) is the same. While the squared minimum distance \(d_{\text{min}}^2 \) has decreased by a factor of two, the number of dimensions has doubled, thus the CMR for QPSK is \(\zeta_{\text{QPSK}} = 1 \) again, as with BPSK. Thus a fair comparison finds QPSK better than BPSK. However, QPSK’s \(\bar{b} = 1 \), so twice as much information per dimension as BPSK. If instead \(E_{\text{x}} \) is the same for BPSK and QPSK, then \(P_e \) will be the same (same \(d_{\text{min}}^2 \)), but \(\bar{b}_{\text{BPSK}} = \frac{1}{2} < \bar{b}_{\text{QPSK}} = 1 \), so again fair comparison finds QPSK better. QPSK uses resources better than BPSK, because BPSK essentially wastes a dimension by transmitting no energy on it.

Exact performance evaluation first computes the average probability of a correct decision \(P_c \), and then \(P_e = 1 - P_c \). Analysis here is for maximum likelihood detection on the AWGN channel with equally probable messages. By constellation symmetry, \(P_{c_{ij}} \) is identical \(\forall i = 0, \ldots, 3. \)

\[P_c = \sum_{i=0}^{3} P_{c_{ij}} \cdot p_{x}(i) = P_{c_{i}} \]

\[= \left(1 - Q \left(\frac{d_{\text{min}}}{2\sigma} \right) \right) \left(1 - Q \left(\frac{d_{\text{min}}}{2\sigma} \right) \right) \]

\[= 1 - 2Q \left(\frac{d_{\text{min}}}{2\sigma} \right) + \left(Q \left(\frac{d_{\text{min}}}{2\sigma} \right) \right)^2 . \]

The noise’s independence in the two dimensions allows progress from (1.188) to (1.189). The probability of a correct decision requires that both noise components fall within the decision region (see Figure 1.31),
which has probability equal to (1.189)’s product of probabilities. Thus

\[P_e = 1 - P_c \]

\[= 2Q \left[\frac{d_{\min}}{2\sigma} \right] - \left(Q \left[\frac{d_{\min}}{2\sigma} \right] \right)^2 < 2Q \left[\frac{d_{\min}}{2\sigma} \right], \]

where \(d_{\min} = \sqrt{2\sigma x} = 2e^{1/2}. \) For reasonable error rates (\(P_e < 10^{-2} \)), the \(\left(Q \left[\frac{d_{\min}}{2\sigma} \right] \right)^2 \) term in (1.192) is negligible, and the bound on the right, which is also the NNUB, is tight. With a “reasonable” mapping of bits to data symbols (e.g. the Gray code 0 → −1 and 1 → +1), QPSK’s bit-error probability is then \(P_b = P_c. \) QPSK’s \(P_e \) is twice BPSK’s \(P_e, \) but \(P_e \) is the same for both.

1.3.3.5.2 Block Binary

For hypercubic signal constellations with \(N \geq 3, \) the symbols are the vertices of a hypercube centered on the origin. The error probability generalizes to

\[P_e = 1 - \left(1 - Q \left[\frac{d_{\min}}{2\sigma} \right] \right)^N < NQ \left[\frac{d_{\min}}{2\sigma} \right], \]

where \(d_{\min} = 2e^{1/2}. \) The basis functions usually satisfy \(\varphi_n(t) = \varphi(t - nT'), \) where \(\varphi(t) \) is (1.178)’s square pulse with \(T' \) replacing \(T. \) One hypercube symbol’s transmission has a symbol period \(T = NT'. \) Basis-function time-scaling can retain a symbol period with \(T \rightarrow T', \) but the narrower pulse will require \(N \) times the bandwidth as the original width pulses. For this case again \(\zeta = 1. \) As \(N \rightarrow \infty, \) \(P_e \rightarrow 1. \) While the probability of any single dimension being correct remains constant and less than one, as \(N \) increases, the probability of all dimensions being correct decreases, and thus \(P_e \) increases.

Ignoring the higher order terms \(Q^i, i \geq 2, \) the average normalized error probability is approximately \(\bar{P}_e \approx Q(d_{\min}/(2\sigma)), \) which equals \(P_e \) for binary antipodal signaling. This example illustrates that increasing dimensionality does not always reduce the error probability unless the signal constellation has been carefully designed. As block binary constellations simply concatenate several binary transmissions, the ML receiver decodes each separately. However, with a careful selection of a subset of the transmitted symbols, it is possible to drive the probability of both a message error \(P_e \) and a bit error \(P_b \) to zero with increasing dimensionality \(N. \) This “coded hypercube constellation” requires that the bits per dimension \(b < 1 \) does not exceed a fundamental AWGN-variance-dependent rate known as the “capacity,” \(b \leq \overline{C} \) (Chapter 8).

1.3.3.6 Orthogonal Constellations

Orthogonal constellations have dimensionality that increases linearly with \(M, \) so then \(M \propto N. \) Orthogonal constellation thus decrease the number of bits per dimension with \(N, \) so \(\tilde{b} = \frac{\log_2(M)}{N} = \frac{\log_2(\alpha N)}{N} \rightarrow 0 \) as \(N \rightarrow \infty. \)

1.3.3.6.1 Block Orthogonal

Block orthogonal constellations have a dimension, or basis function, for each symbol vector. The block-orthogonal constellation thus contains \(M = N \) orthogonal symbols \(x_{i=0,...,M-1}, \) that satisfy

\[\langle x_i(t), x_j(t) \rangle = \delta_{i,j} = \mathcal{E} \cdot \delta_{i,j}. \]

(1.194)

Figure 1.39 shows block orthogonal constellations for \(N = 2 \) and 3. The signal constellation vectors are, in general,

\[x_i = \begin{bmatrix} 0 & ... & 0 & \sqrt{\mathcal{E}} & 0 & ... & 0 \end{bmatrix} = \sqrt{\mathcal{E}} \cdot \varphi_{i+1}. \]

(1.195)

The CFM should not be used on block orthogonal signal sets because \(\tilde{b} < 1, \) but the fair comparison of \(2/3 \) of \(\tilde{b}, \) \(\mathcal{E}, \) and \(\bar{P}_e \) can be used, and Block Orthogonal will not compare well.
Two block-orthogonal signaling examples follow:

Definition 1.3.16 (Return to Zero (RZ) Signaling) RZ uses the following two basis functions for Figure 1.39’s two-dimensional constellation:

\[
\varphi_1(t) = \begin{cases}
\frac{1}{\sqrt{T}} & 0 \leq t \leq T \\
0 & \text{elsewhere}
\end{cases}
\]

\[
\varphi_2(t) = \begin{cases}
\frac{1}{\sqrt{T}} & 0 \leq t < T/2 \\
-\frac{1}{\sqrt{T}} & T/2 \leq t < T \\
0 & \text{elsewhere}
\end{cases}
\]

(1.196)

(1.197)

“Return to zero” indicates that the transmitted voltage (i.e. the signal waveform’s real value) always returns to the same value at the beginning of any symbol period. Equivalently, for the same energy/dimension \(\bar{E}_x\) and normalized error probability \(\bar{P}_e\), RZ provides half the data rate of NRZ.

As for any binary signal constellation, and thus for RZ,

\[
P_b = P_e = Q\left[\frac{d_{\text{min}}}{2\sigma}\right] = Q\left[\sqrt{\frac{\bar{E}_x}{2\sigma^2}}\right].
\]

(1.198)

RZ is thus 3 dB inferior to binary antipodal signaling, or equivalently, uses twice NRZ’s bandwidth. Thus, \(b_{RZ} = \frac{1}{2}\) while \(b_{NRZ} = 1\) for the same \(P_e\) and \(\bar{E}_x\) in the 2-of-3 fair comparison.

Definition 1.3.17 (Frequency Shift Keying (FSK)) Frequency shift keying uses in Figure 1.39’s two basis functions with \(N = 2\):

\[
\varphi_1(t) = \begin{cases}
\frac{\sqrt{2}}{T} \sin \frac{\pi t}{T} & 0 \leq t \leq T \\
0 & \text{elsewhere}
\end{cases}
\]

\[
\varphi_2(t) = \begin{cases}
\frac{\sqrt{2}}{T} \sin \frac{2\pi t}{T} & 0 \leq t \leq T \\
0 & \text{elsewhere}
\end{cases}
\]

(1.199)

(1.200)

The term “frequency-shift” indicates that modulator or input bit sequence of “1’s” and “0’s” shifts between two different respective frequencies, \(1/(2T)\) and \(1/T\).
As for any binary signal constellation,

\[P_b = P_e = Q \left[\frac{d_{\min}}{2\sigma} \right] = Q \left[\sqrt{\frac{E_x}{2\sigma^2}} \right] . \]

(1.201)

FSK is also 3 dB inferior to binary antipodal signaling. FSK performs fundamentally the same as RZ, just with different basis functions.

FSK extends to higher-dimensional block-orthogonal constellations \(N > 2 \) by adding the following basis functions \((i \geq 3)\):

\[\varphi_i(t) = \begin{cases} \sqrt{\frac{2}{T}} \sin \left(\frac{\pi t}{T_0} \right) & 0 \leq t \leq T_0 \\ 0 & \text{elsewhere} \end{cases} \]

(1.202)

The required bandwidth necessary to realize the additional basis functions grows linearly with \(N \) for this FSK extension. Such FSK systems do not fairly compare well with RZ or cubic constellations. They may be used for implementation simplicity when efficient dimensionality use is of less importance.

1.3.3.6.2 \(P_e \) Computation for Block Orthogonal

Block orthogonal’s \(P_e \) computation returns to Figure 1.28’s signal detector. Because all the signals are equally likely and of equal energy, this detector’s constants \(c_i \) can be omitted (because they are all the same constant \(c_i = c \)). The MAP receiver then simplifies to

\[\tilde{m} = m_i \text{ if } \langle y, x_i \rangle \geq \langle y, x_j \rangle \forall j \neq i, \]

(1.203)

Block-orthogonal’s constellation symmetry leads to \(P_{e/i} = P_e \) or \(P_{c/i} = P_c \) for all \(i \). Analysis thus calculates only \(P_c = P_{c|i=0} \), in which case the elements of \(y \) are

\[y_0 = \sqrt{E_x} + n_0 \]

\[y_i = n_i \forall i \neq 0 \]

(1.204)

(1.205)

For an ML decision to be message 0, then \(\langle y, x_0 \rangle \geq \langle y, x_i \rangle \) or equivalently \(y_0 \geq y_i \forall i \neq 0 \). This decision’s probability of being correct is

\[P_{c/0} = P\{y_0 \geq y_i \forall i \neq 0| \text{given 0 was sent} \} . \]

(1.206)

If \(y_0 \) has a particular value \(v \), then since \(y_i = n_i \forall i \neq 0 \) and since all the noise components are independent,

\[P_{c/0=y=v} = P\{n_i \leq v, \forall i \neq 0\} \]

\[= \prod_{i=1}^{N-1} P\{n_i \leq v\} \]

\[= \left[1 - Q(v/\sigma) \right]^{N-1} . \]

(1.207)

(1.208)

(1.209)

The last equation uses the fact that the \(n_i \) are independent, identically distributed Gaussian random variables \(\mathcal{N}(0, \sigma^2) \). Finally, recalling that \(y_0 \) is also a Gaussian random variable \(\mathcal{N}(\sqrt{E_x}, \sigma^2) \).

\[P_c = P_{c/0} = \int_{-\infty}^{\infty} (2\pi\sigma^2)^{-1} \cdot e^{-\frac{1}{2\sigma^2}(v-\sqrt{E_x})^2} \cdot [1 - Q(v/\sigma)]^{N-1} \, dv , \]

(1.210)

yielding

\[P_c = 1 - \int_{-\infty}^{\infty} (2\pi\sigma^2)^{-1} \cdot e^{-\frac{1}{2\sigma^2}(v-\sqrt{E_x})^2} \cdot [1 - Q(v/\sigma)]^{N-1} \, dv . \]

(1.211)

This function must be evaluated numerically using a computer, as in Figure 1.40.
A simpler calculation yields the NNUB, which also coincides with the union bound because the number of nearest neighbors $M - 1$ equals the total number of neighbors to any point for block orthogonal constellations. The NNUB is given by

$$P_e \leq (M - 1) \cdot Q \left(\frac{d_{\min}}{2\sigma} \right) = (M - 1) \cdot Q \left(\sqrt{\frac{E_x}{2\sigma^2}} \right).$$ \hspace{1cm} (1.212)$$

Figure 1.40 shows that as N gets large, performance improves without increase of SNR, but at the expense of a lower \bar{b}. This illustrates the possibility of driving $P_e \to 0$ at the cost of diminishing data rate. Chapter 2 will show that for finite SNR, the data rate need not diminish as long as it is below a theoretically computed maximum called the capacity. Block orthogonal signaling is not necessarily a good method to obtain high reliability.

1.3.3.6.3 Simplex Constellation Block-orthogonal constellations have nonzero mean value, $E[x] = (\sqrt{E_x}/M)[1 \ 1 \ ... \ 1]$. Constellation translation by $-E[x]$ minimizes the average constellation energy without changing the average error probability. The translated constellation is the **simplex constellation**, is

$$x^s_i = \left(-\frac{\sqrt{E_x}}{M}, ..., -\frac{\sqrt{E_x}}{M}, \frac{\sqrt{E_x}}{M}, (1 - \frac{1}{M}), -\frac{\sqrt{E_x}}{M}, ..., -\frac{\sqrt{E_x}}{M} \right)^\prime,$$

which provides significant energy savings for small M (over block orthogonal). The constellation’s symbol vectors, however, are no longer orthogonal.

$$\langle x^s_i, x^s_j \rangle = (x_i - E[x])^\prime (x_j - E[x])$$ \hspace{1cm} (1.215)
By the Theorem of Translational Invariance 1.3.3, the simplex constellation’s P_c equals the block-orthogonal constellation’s P_c in (1.211), and bounded in (1.212), albeit the simplex constellations uses less energy. The simplex constellation for binary block orthogonal is binary antipodal. In general, by using a Gram-Schmidt decomposition, it is possible to reduce the simplex constellation’s number of dimensions by 1 dimension.

1.3.3.6.4 Pulse Duration & Position Modulation Figure 1.41 shows pulse-duration modulation’s modulated waveforms. The number of symbols M in the PDM constellation increases linearly with the number of dimensions N, as for block-orthogonal constellations. PDM finds use with some modifications in read-only optical data storage (i.e. compact disks). Such optical-disk data storage records messages by the length of a hole or “pit” burned into the storage medium. The minimum pit width (4T in the figure) is much larger than the separation (T) between the different PDM signal waveforms. The PDM signal set is evidently not orthogonal.
A second performance-equivalent (to PDM, without regard for energy) modulated waveform set is Figure 1.42’s Pulse Position Modulation (PPM). The PPM Constellation is a block-orthogonal constellation, which has the previously derived P_c. PDM’s average energy of the PDM constellation clearly exceeds PPM’s energy, which in turn exceeds that of a corresponding simplex constellation. Nevertheless, constellation energy minimization is usually not important when PDM is used; for the optical-storage example, the optical-channel physics mandate the minimum “pit” duration, and the resultant “energy” increase is not of primary concern.

1.3.3.6.5 Biorthogonal Constellations A variation on block-orthogonal modulation is biorthogonal modulation, which doubles the message-set size from $M = N$ to $M = 2N$ by including each symbol vector’s negative in the constellation. From this perspective, QPSK has both a biorthogonal constellation and a cubic constellation.

The error-probability analysis for biorthogonal constellations parallels that for block-orthogonal constellations. As with orthogonal signaling, because all the signals are equally likely and of equal energy, the constants c_i in the signal detector in Figure 1.28 can be omitted, and the MAP receiver becomes

$$\hat{m} \Rightarrow m_i \text{ if } < y, x_i > \geq < y, x_j > \forall j \neq i .$$

By symmetry $P_{e/i} = P_e$ or $P_{c/i} = P_c$ for all i. Let $i = 0$. Then

$$y_0 = \sqrt{E_x} + n_0$$
$$y_i = n_i \forall i \neq 0 .$$

If x_0 was sent, then a correct decision occurs if $(y, x_0) \geq (y, x_i)$ or equivalently if $y_0 \geq |y_i| \forall i \neq 0$. Thus

$$P_{e/0} = P\{y_0 \geq |y_i|, \forall i \neq 0 / 0 \text{ was sent} \} .$$

If y_0 takes on a particular value $v \in [0, \infty)$, then since the noise components n_i are i.i.d.

$$P_{c/0,y_0=v} = \prod_{i=1}^{N-1} P\{|n_i| \leq v\}$$
$$= [1 - 2Q(v/\sigma)]^{N-1} .$$
If $y_0 < 0$, then an incorrect decision occurs if symbol zero was sent. (The reader should visualize this constellation’s decision regions). Thus

$$P_e = P_{e/o} = \int_0^\infty (\sqrt{2\pi\sigma^2})^{-1} \cdot e^{-\frac{1}{2\sigma^2}(v-\sqrt{E_X})^2} \cdot [1 - 2Q(v/\sigma)]^{N-1} dv ,$$ \hspace{1cm} (1.225)

yielding

$$P_e = 1 - \int_0^\infty (\sqrt{2\pi\sigma^2})^{-1} \cdot e^{-\frac{1}{2\sigma^2}(v-\sqrt{E_X})^2} \cdot [1 - 2Q(v/\sigma)]^{N-1} dv .$$ \hspace{1cm} (1.226)

This function can be evaluated numerically using a computer.

Using the NNUB, which is slightly tighter than the union bound because the number of nearest neighbors is $M - 2$ for biorthogonal signaling,

$$P_e \leq \left(M - 2 \right) \cdot Q \left[\frac{d_{\min}}{2\sigma} \right] = 2(N - 1) \cdot Q \left[\sqrt{\frac{E_X}{2\sigma^2}} \right] .$$ \hspace{1cm} (1.227)

1.3.3.7 Circular Constellations - M-ary Phase Shift Keying

Figures 1.26 and 1.34 provided PSK examples. In general, M-ary PSK places the data symbol vectors at equally spaced angles (or phases) around a two-dimensional circle of radius $\sqrt{E_X}$. PSK modulation changes only the signal phase, while the signal’s amplitude or “envelope” remains constant, thus the name’s origin.

PSK often finds use on channels with nonlinear amplitude distortion where modulated signals that include information content in the time varying amplitude could otherwise experience performance degradation from the nonlinear amplitude distortion. The minimum distance for M-ary PSK is given by

$$d_{\min} = 2\sqrt{E_X} \cdot \sin \frac{\pi}{M} = 2\sqrt{2\bar{E}_X} \cdot \sin \frac{\pi}{M} .$$ \hspace{1cm} (1.228)

The CFM is

$$\zeta_X = 2 \sin^2 \left(\frac{\pi}{M} \right) ,$$ \hspace{1cm} (1.229)

which is inferior to block binary signaling for any constellation with $M > 4$. The NNUB on error probability is tight and equal to

$$P_e < 2 \cdot Q \left[\sqrt{\frac{E_X}{\sigma^2} \sin \frac{\pi}{M}} \right] ,$$ \hspace{1cm} (1.230)

for all M.

1.3.4 Rectangular (and Hexagonal) Signal Constellations

Data transmission very commonly uses rectangular constellations for transmission. Hexagonal constellations are in rare use, but help progress understanding toward Chapter 2’s codes. These constellations use equally spaced symbols on translated one- or two-dimensional vector space known as a lattice. This study also introduces and re-uses some basic concepts, namely revisit of the previously defined SNR, and the new concepts of shaping gain, the continuous approximation, and the peak-to-average power ratio. This section’s constellations are largely the foundation for all this text’s subsequent developments.

Subsection 1.3.4.1 studies pulse amplitude modulation (PAM), while Subsection 1.3.4.2 studies quadrature amplitude modulation (QAM). Subsection 1.3.4.3 discusses additional measures of constellation performance.

1.3.4.0.1 The Continuous Approximation

For a geometrically uniform constellation, C, the continuous approximation computes the constellation’s average energy by approximating a discrete energy sum with a continuous integral. To use such continuous integration, a continuous uniform distribution approximates the constellation’s discrete probability distribution over a region defined by the constellation’s boundaries. In this constellation region, each symbol appears in the center of an identically shaped
fundamental-volume region (or Voronoi Region), $V(\Lambda)$, where Λ is a lattice from which the symbols were selected. The Voronoi region’s volume is $V(\Lambda)$, so $V(\Lambda) = |V(\Lambda)|$. This Voronoi region’s centered symbol vector thus has a maximum number of nearest neighbors, or equivalently number of sides. The union of all symbols’ Voronoi regions is the constellation’s Voronoi boundary $V_x = \bigcup_{m=0}^{M-1} V_i(\Lambda)$ where $V_i(\Lambda)$ corresponds to the ith symbol’s Voronoi region. The Voronoi boundary envelops a volume $|C| \cdot V(\Lambda)$ (or $M \cdot V(\Lambda)$ when $M = |C|$).

The continuous approximation replaces the constellation symbols’ discrete distribution with a uniform probability density region contained within the Voronoi boundary. That continuous probability density is $p_x(u) = \frac{1}{|C| \cdot V(\Lambda)} \forall u \in V_x$. Chapter 2’s coded systems allow $N > 2$, and thus the uniform probability density will be over that larger dimensionality where symbols are equally likely (uniform distribution) - which does not necessarily imply uniform distribution in 1 or 2 dimensional slices of that larger region, see Chapter 2 where the Voronoi regions may not be simple hypercubes and thus cause such effect.

Definition 1.3.18 (Continuous Approximation) The continuous approximation to a constellation’s average energy equals

$$\bar{E}_x \approx \bar{\tilde{E}}_x = \int_{V_x} \|u\|^2 \cdot \frac{1}{|C| \cdot V(\Lambda)} du,$$

where the N-dimensional integral covers the Voronoi boundary V_x for the constellation C. The constant term $|C| \cdot V(\Lambda)$ is superfluous, and thus really just a normalizing scale-factor. It might correspond to any continuous region with the same volume with uniform density. Indeed, the number of constellation symbols $|C|$ is no longer relevant other than it helps “size” the region as a scale factor.

For large size $|C|$ with regular symbol-vector spacing, the continuous approximation’s deviation from actual energy is small, as several examples will later demonstrate.

For many regions, mathematicians have tabulated the squared energy, or equivalently the region’s second moment (scaled by the inverse volume $V^{-2/N}$). Problem 1.19 investigates a few simple regions. The energy/second-moment and volume can be computed from basic geometric parameters. For instance for a circle (2D), the Area is πr^2 with radius r and the second moment is $\frac{1}{2} \pi r^4$, making continuous approximation energy equal to $\frac{1}{2} \pi r^2$. The ratio of this to volume is then $\frac{1}{2}$ or equivalently the 2D volume (area) is twice the energy of a circle. The circle’s radius grows as more symbols pack into this circle so a larger constellation (presumably each point with some fixed V_x), but the ratio of energy/volume will remain (with large M or effectively continuous uniform distribution) $1/2$.

A hypersphere of increasingly large dimensionality as $N \to \infty$ has well-known limiting second moment for radius r, $E_x = \pi^{\frac{N}{2}}$. An N-dimensional sphere’s volume for radius r is (when N is even)

$$V_N(r) = \frac{(\pi r^2)^{N/2}}{(\frac{N}{2} \pi)^{N/2}}.$$ \hfill (1.232)

Then energy per dimension is

$$\bar{\tilde{E}}_x = \frac{r^2}{N+2}.$$ \hfill (1.233)

The two dimensional energy total is $2 \cdot \bar{\tilde{E}}_x$. Energy is a squared quantity, so volume should also be related to a 2D squared quantity when compared with energy. The appropriate ratio is thus

$$\frac{\bar{\tilde{E}}_x}{V^{2/N}_x} = \frac{r^2}{N+2} \frac{(\frac{N}{2} \pi)^{N/2}}{\pi \cdot (N+2)}.$$ \hfill (1.234)

28Or, more properly a coset thereof, see Appendix for more on lattices and cosets, but for now view a lattice as a grid of regularly spaced symbols is sufficient

29This text will often use the terms probability density and distribution interchangeably even though strict terminology might only use distribution for discrete random variables and density for continuous random variables.
Stirling’s formula is that as \(m \to \infty \), then \(m! \to (m/e)^m \), so then the inverse of (1.234) becomes
\[
\lim_{N \to \infty} \frac{V^{2/N}}{\bar{E}_x} = 2\pi e. \tag{1.235}
\]

1.3.4.1 Pulse Amplitude Modulation (PAM)

Pulse amplitude modulation, or amplitude shift keying (ASK), uses a one-dimensional constellation with \(M = 2^b \) symbols with \(b \) as a positive integer. Figure 1.43 illustrates the PAM constellation, which is a subset of lowest-energy symbols from a scaled-by-\(d \) integer lattice, offset from 0 by \(d/2 \). The basis function can be any unit-energy function, but often \(\varphi_1(t) \) is
\[
\varphi_1(t) = \frac{1}{\sqrt{T}} \text{sinc} \left(\frac{t}{T} \right) \tag{1.236}
\]
or another “Nyquist” pulse shape (see Chapter 3). The data-symbol amplitudes are
\[
x \in \left\{ \pm \frac{d}{2}, \pm \frac{3d}{2}, \pm \frac{5d}{2}, \ldots, \pm \frac{(M-1)d}{2} \right\}, \tag{1.237}
\]
and all input levels are equally likely. The minimum distance between symbols in a PAM constellation abbreviates as
\[
d_{\text{min}} = d. \tag{1.238}
\]
Both binary antipodal and “2B1Q” are examples of PAM signals.

PAM’s average energy is
\[
\mathcal{E}_x = \bar{\mathcal{E}}_x = \frac{1}{M} \sum_{\kappa=1}^{M/2} \left(\frac{2k-1}{2} \right)^2 \cdot d^2 \tag{1.239}
\]
\[
= \frac{d^2}{2M} \sum_{\kappa=1}^{M/2} (4k^2 - 4k + 1) \tag{1.240}
\]
\[
= \frac{d^2}{2M} \left[4 \left(\frac{(M/2)^3}{3} + \frac{(M/2)^2}{2} + \frac{(M/2)}{6} \right) - 4 \left(\frac{(M/2)^2}{2} + \frac{(M/2)}{2} \right) + \frac{M^2}{2} \right] \tag{1.241}
\]
\[
= \frac{d^2}{2M} \left[\frac{M^3}{6} - \frac{M}{6} \right] \tag{1.242}
\]
\[
= \frac{d^2}{12} \cdot [M^2 - 1]. \tag{1.243}
\]
The PAM minimum distance is a function of E_x and M:

$$d = \sqrt{\frac{12E_x}{M^2 - 1}}. \quad (1.244)$$

Finally, given distance and average energy,

$$\bar{b} = \log_2 M = \frac{1}{2} \log \left(12\frac{E_x}{d^2} + 1 \right). \quad (1.245)$$

Figure 1.43 shows that the decision region for any PAM constellation’s interior point extends over a length-d interval centered on that point. The constellation’s Voronoi boundary thus extends over an interval of Md over $[-\frac{Md}{2}, \frac{Md}{2}]$. The continuous approximation for PAM assumes a uniform distribution on this interval $[-\frac{Md}{2}, \frac{Md}{2}]$ with then approximate average energy of

$$E_x = \bar{E}_x = \frac{d^2}{12} \left(1 - \frac{1}{M} \right) \cdot Q \left(\frac{d_{\text{min}}}{2\sigma} \right). \quad (1.246)$$

The continuous approximation for the average energy in (1.246) does not include (1.243)’s constant term $-\frac{d^2}{12}$, which becomes negligible as M becomes large.

Since $M = 2^b$, then $M^2 = 4^b$, leaving alternative relations ($\bar{b} = b$ for $N = 1$) for (1.243) and (1.244)

$$E_x = \bar{E}_x = d^2 \cdot \left(4^b - 1 \right) = \frac{d^2}{12} \cdot \left(4^b - 1 \right), \quad (1.247)$$

and

$$d = \sqrt{\frac{12E_x}{4^b - 1}}. \quad (1.248)$$

The following recursion derives from increasing the number of bits, $b = \bar{b}$, in a PAM constellation while maintaining constant minimum distance between symbols:

$$\bar{E}_x(b + 1) = 4 \cdot \bar{E}_x(b) + \frac{d^2}{4}. \quad (1.249)$$

Thus for moderately large b, the required signal energy increases by a factor of 4 for each additional bit in the messages corresponding to the constellation. This corresponds to an increase of 6dB per bit, a measure commonly quoted by communication engineers as the required SNR increase for a transmission scheme to support an additional bit-per-dimension of information (presuming PAM is in use) at this same d_{min}.

The PAM probability of correct symbol detection is

$$P_c = \sum_{i=0}^{M-1} P_{c|i} \cdot p_x(i) \quad (1.250)$$

$$= \frac{M - 2}{M} \cdot \left(1 - 2Q \left[\frac{d_{\text{min}}}{2\sigma} \right] \right) + \frac{2}{M} \cdot \left(1 - Q \left[\frac{d_{\text{min}}}{2\sigma} \right] \right) \quad (1.251)$$

$$= 1 - 2 \left(1 - \frac{1}{M} \right) \cdot Q \left[\frac{d_{\text{min}}}{2\sigma} \right] \quad (1.252)$$

Thus, the PAM (symbol) error probability is

$$P_e = P_c = 2 \left(1 - \frac{1}{2^b} \right) \cdot Q \left[\frac{d_{\text{min}}}{2\sigma} \right] < 2Q \left[\frac{d_{\text{min}}}{2\sigma} \right]. \quad (1.254)$$
The average number of nearest neighbors for the constellation is $2(1 - \frac{1}{M})$; thus, the NNUB is exact for PAM. Thus

$$P_e = 2 \left(1 - \frac{1}{M}\right) \cdot Q\left(\sqrt{\frac{3}{M^2 - 1}}SNR\right)$$ (1.255)

<table>
<thead>
<tr>
<th>$b = \bar{b}$</th>
<th>M</th>
<th>$d_{\bar{b}}$ for $P_e = 10^{-6} \approx 2Q\left(\frac{d_{\min}}{2\sigma}\right)$</th>
<th>SNR</th>
<th>SNR increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>13.7dB</td>
<td>13.7dB</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>13.7dB</td>
<td>20.7dB</td>
<td>7dB</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>13.7dB</td>
<td>27.0dB</td>
<td>6.3dB</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>13.7dB</td>
<td>33.0dB</td>
<td>6.0dB</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>13.7dB</td>
<td>39.0dB</td>
<td>6.0dB</td>
</tr>
</tbody>
</table>

Table 1.2: PAM constellation energies.

For $P_e = 10^{-6}$, $d_{\bar{b}} \approx 4.75$ (13.5dB). Table 1.2 relates $b = \bar{b}$, M, $d_{\bar{b}}$, the SNR, and the required increase in SNR (or equivalently in E_x) to transmit an additional bit at an error probability $P_e = 10^{-6}$. Table 1.2 shows that for $b = \bar{b} > 2$, the approximation of 6dB per bit is very accurate.

Pulse amplitude constellations with $b > 2$ are typically known as 3B1O - three bits per octal signal (for 8 PAM) and 4B1H (4 bits per hexadecimal signal), but are rare in use with respect to the yet more popular quadrature amplitude modulation of Section 1.3.4.2.

1.3.4.2 Quadrature Amplitude Modulation (QAM)

QAM is a two-dimensional generalization of PAM. The two basis functions are usually

$$\varphi_1(t) = \sqrt{\frac{2}{T}} \text{sinc}\left(\frac{t}{T}\right) \cos \omega_c t$$ (1.256)

$$\varphi_2(t) = -\sqrt{\frac{2}{T}} \text{sinc}\left(\frac{t}{T}\right) \sin \omega_c t$$ (1.257)

The sinc(t/T) term may be replaced by any Nyquist pulse shape as discussed in Chapter 3. The ω_c is a radian carrier frequency that Subsections 1.3.5 and 1.3.6 discuss further; for now, $\omega_c \geq \pi/T$.

1.3.4.2.1 The QAM Square Constellation

Figure 1.44 illustrates QAM Square Constellations. These constellations are the Cartesian products\(^{30}\) of 2-PAM with itself and 4-PAM with itself, respectively.

\(^{30}\)A Cartesian Product, a product of two sets, is the set of all ordered pairs of coordinates, the first coordinate taken from the first set in the Cartesian product, and the second coordinate taken from the second set in the Cartesian product.
Generally, square M-QAM constellations derive from the Cartesian product of two \sqrt{M}-PAM constellations. For b bits per dimension, the $M = 4^b$ symbols are at the coordinates
\[
\left\{ \pm \frac{d}{2}, \pm \frac{3d}{2}, \pm \frac{5d}{2}, \ldots, \pm \frac{(\sqrt{M} - 1)d}{2} \right\}
\]
in each dimension. Square QAM constellation's have average energy
\[
\mathcal{E}_{M\text{-QAM}} = \mathcal{E}_x = 2\mathcal{E}_x = \frac{1}{M} \sum_{i,j=1}^{\sqrt{M}} (x_i^2 + x_j^2) = \frac{1}{M} \left[\sqrt{M} \sum_{i=1}^{\sqrt{M}} x_i^2 + \sqrt{M} \sum_{j=1}^{\sqrt{M}} x_j^2 \right] = \frac{2}{\sqrt{M}} \sum_{i=1}^{\sqrt{M}} x_i^2 = 2\mathcal{E}_{\sqrt{M}\text{-PAM}} = d^2 \left(M - \frac{1}{6} \right)
\]
Thus, the M-QAM constellation’s average energy per dimension is
\[\bar{E}_x = d^2 \left(\frac{M - 1}{12} \right), \]
which expectedly equals the constituent \sqrt{M}-PAM constellation’s \bar{E}_x. The minimum distance $d_{\text{min}} = d$ derives from \bar{E}_x (or \bar{E}_x) and M as
\[d = \sqrt{\frac{6\bar{E}_x}{M - 1}} = \sqrt{\frac{12\bar{E}_x}{M - 1}}. \]
Since $M = 4^b$, alternative relations for (1.263) and (1.264) in terms of the average bit rate \bar{b} are
\[\bar{E}_x = \frac{\bar{E}_x}{2} = d^2 \left[4^b - 1 \right], \]
and
\[d = \sqrt{\frac{12\bar{E}_x}{4^b - 1}}. \]
Finally,
\[\bar{b} = \frac{1}{2} \log_2 \left(\frac{6\bar{E}_x}{d^2} + 1 \right) = \frac{1}{2} \log_2 \left(\frac{12\bar{E}_x}{d^2} + 1 \right) , \]
the same as PAM.

For large M, $\bar{E}_x \approx \frac{d^2}{12} M = \frac{d^2}{12} 4^b$, which is the same as the continuous approximation: Square QAM’s continuous approximation uses a uniform probability density over the square defined by $[\pm \sqrt{M}, \pm \sqrt{M}]$,
\[E_x \approx \int_{-\sqrt{M}}^{\sqrt{M}} \int_{-\sqrt{M}}^{\sqrt{M}} x^2 + y^2 \frac{d}{4L^2} \, dx \, dy = 2 \left(\frac{\sqrt{M}}{2} \right)^2, \]
or $\frac{\sqrt{M}}{2} = \sqrt{3\bar{E}_x}$. Since each QAM constellation symbol’s Voronoi region has area d^2,
\[M \approx 4 \cdot \left(\frac{\sqrt{M}}{2} \right)^2 = \frac{6\bar{E}_x}{d^2} = \frac{12\bar{E}_x}{d^2}. \]
This result agrees with Equation (1.263) for large M. The continuous approximation’s energy-computation error rapidly becomes negligible as $M \to \infty$.

Increasing a QAM constellation’s b while maintaining constant minimum distance leads to the following average-energy-increase recursion:
\[E_x(b + 1) = 2 \cdot E_x(b) + \frac{d^2}{6}. \]
Asymptotically the average energy increases by 3dB for each bit added to a square QAM constellation.

Square QAM’s error-probability calculation follows from 3 types of correct-decision conditional probabilities:

1. **corner** constellation symbol vectors (4 points with only 2 nearest neighbors)
\[P_{c|\text{corner}} = \left(1 - Q \left[\frac{d}{2\sigma} \right] \right)^2 \]
2. **inner** constellation symbol vectors ($\sqrt{M} - 2)^2$ points with 4 nearest neighbors)
\[P_{c|\text{inner}} = \left(1 - 2Q \left[\frac{d}{2\sigma} \right] \right)^2 \]

78
3. **edge** constellation symbol vectors \(4(\sqrt{M} - 2)\) points with 3 nearest neighbors

\[
P_{c|\text{edge}} = \left(1 - Q \left[\frac{d}{2\sigma}\right]\right) \left(1 - 2Q \left[\frac{d}{2\sigma}\right]\right) .
\]

(1.273)

The probability of being correct is then (abbreviating \(Q \left[\frac{d}{2\sigma}\right]\))

\[
P_{c} = \sum_{i=0}^{M-1} P_{c/i} P_{i}(i)
\]

(1.274)

\[
P_{c} = \frac{4}{M} (1 - Q)^2 + \frac{(\sqrt{M} - 2)^2}{M} (1 - 2Q)^2 + \frac{4(\sqrt{M} - 2)}{M} (1 - 2Q) (1 - Q)
\]

(1.275)

\[
= \frac{1}{M} \left[(4 - 8Q + 4Q^2) + (4\sqrt{M} - 8)(1 - 3Q + 2Q^2)\right]
\]

(1.276)

\[
= \frac{1}{M} \left[M + (4\sqrt{M} - 4M)Q + (4 - 8\sqrt{M} + 4M)Q^2\right]
\]

(1.277)

\[
= 1 + 4\left(\frac{1}{\sqrt{M}} - 1\right)Q + 4\left(\frac{1}{\sqrt{M}} - 1\right)^2 Q^2
\]

(1.278)

Thus, the (symbol) error probability is

\[
P_{e} = 4 \left(1 - \frac{1}{\sqrt{M}}\right) \cdot Q \left[\frac{d}{2\sigma}\right] - 4 \left(1 - \frac{1}{\sqrt{M}}\right)^2 \cdot \left(Q \left[\frac{d}{2\sigma}\right]\right)^2 < 4 \left(1 - \frac{1}{\sqrt{M}}\right) \cdot Q \left[\frac{d}{2\sigma}\right] .
\]

(1.280)

The average number of nearest neighbors for the constellation equals \(4(1 - 1/\sqrt{M})\), thus for QAM the NNUB is not exact, but usually tight. The corresponding normalized NNUB is

\[
P_{e} \leq 2 \left(1 - \frac{1}{2^b}\right) \cdot Q \left[\frac{d}{2\sigma}\right] = 2 \left(1 - \frac{1}{2^b}\right) \cdot Q \left[\sqrt{\frac{3}{M-1}} \cdot \text{SNR}\right]
\]

(1.281)

which equals the PAM result. For \(P_{e} = 10^{-6}\), one determines that \(\frac{d}{2\sigma} \approx 4.75\) (13.5dB). Table 1.3 relates \(\bar{b}, M, \frac{d}{2\sigma}\), the SNR, and the required increase in SNR (or equivalently in \(\bar{E}_{x}\)) to transmit an additional bit of information. As with PAM for average bit rates of \(\bar{b} > 2\), the approximation of 3dB per bit per two-dimensional QAM symbol for the average energy increase is accurate.

<table>
<thead>
<tr>
<th>(b = 2^b)</th>
<th>(M)</th>
<th>(\frac{d}{2\sigma}) for (P_{e} = 10^{-6} \approx 2Q \left[\frac{d_{\min}}{2\sigma}\right])</th>
<th>(\text{SNR} = \frac{d_{\min}}{3} (M - 1)^{0.37})</th>
<th>(\text{SNR increase} = \frac{M - 1}{(M - 1)^{0.37}})</th>
<th>(\text{dB/bit})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>13.7dB</td>
<td>13.7dB</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>13.7dB</td>
<td>20.7dB</td>
<td>7.0dB</td>
<td>3.5dB</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>13.7dB</td>
<td>27.0dB</td>
<td>6.3dB</td>
<td>3.15dB</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>13.7dB</td>
<td>33.0dB</td>
<td>6.0dB</td>
<td>3.0dB</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>13.7dB</td>
<td>39.0dB</td>
<td>6.0dB</td>
<td>3.0dB</td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
<td>13.7dB</td>
<td>45.0dB</td>
<td>6.0dB</td>
<td>3.0dB</td>
</tr>
<tr>
<td>14</td>
<td>16,384</td>
<td>13.7dB</td>
<td>51.0dB</td>
<td>6.0dB</td>
<td>3.0dB</td>
</tr>
</tbody>
</table>

Table 1.3: QAM constellation energies.

The constellation figure of merit for square QAM is

\[
\xi_{x} = \frac{3}{M - 1} = \frac{3}{4^b - 1} = \frac{3}{2^b - 1} .
\]

(1.282)
When b is odd, it is possible to define a SQ QAM constellation by taking every other point from a $b+1$ SQ QAM constellation. (See Problem 1.14.)

Two examples illustrate the wide use of QAM transmission.

EXAMPLE 1.3.6 (Cable Modem) Cable modems upgrade what was an existing cable-broadcast-TV systems' coaxial cables to two-way transmission\(^{31}\). Early cable systems used simple QAM in both transmission directions. The downstream direction from cable TV end to customer is typically at a carrier frequency well above the used TV band, somewhere between 300 MHz and 2000 MHz. The upstream direction is most often below 50 MHz, typically between 5 and 40 MHz. The symbol rate is typically $1/T=2\text{MHz}$ so the data rate is some multiple of 4 Mbps on any given carrier. Typically about 10 carriers were used (so a multiple of 40 Mbps upstream maximum) for a group of customers with consistent channel characteristics in an immediate neighborhood. Each group is thus shared leading to the famous "cable hogging" problem when one customer uses all his neighbors' bandwidth (Cable operators notoriously quote only the peak speed for the group when selling the service, which is misleading if multiple users simultaneously use the system.) As the cable industry advanced, transmission methods improved to Chapter 4’s multi-carrier methods, although the cable-hogging problem persists well into the first decades of the 21st century.

EXAMPLE 1.3.7 (Satellite TV Broadcast) Satellite television uses 4QAM in downlink broadcast transmission at one of 20 carrier frequencies between 12.2 GHz to 12.7 GHz from satellite to customer receiver for some suppliers and satellites. Corresponding carriers between 17.3 and 17.8 GHz are used to send the uplink signals from the broadcaster to the satellite, again with QAM. The symbol rate is $1/T=19.151\text{MHz}$, so the aggregate data rate is a multiple of 38.302 Mbps on any of the 20 carriers. This is sufficient to carry multiple TV stations per carrier/QAM signal. (Some stations watched by many, for instance sports, may get a larger allocation of bandwidth and carry a higher-quality image than others that are not heavily watched. An ultra-high-definition TV channel requires 20-30 Mbps if sent with full fidelity. Each carrier is transmitted in a 24 MHz transponder channel on the satellite – these 24 MHz channels were originally used to broadcast a single analog TV channel, modulated via FM unlike terrestrial analog broadcast television (which uses only 6 MHz for analog TV). Thus, the migration to digital transmission increased the number of TV channels. Advanced satellite systems now may use M SQ QAM constellations to increase data rates and number of channels further.

\(^{31}\)Cable TV provider sent personnel to the network’s various unidirectional blocking points to install so-called bi-directional “diplex” filters to enable the upgrade from uni-directional broadcast.
1.3.4.2.2 QAM Cross Constellations

The QAM cross constellation also allows for odd numbers of bits per symbol in QAM data transmission. To construct a QAM cross constellation with b bits per symbol, the constellation augments a square 2^{b-1} QAM constellation by adding 2^{b-1} data symbols that extend this smaller QAM square’s sides. The QAM CR constellation excludes the corners as in Figure 1.45. QAM CR constellations are better than QAM SQ constellations increasingly with b increase.

QAM CR average energy computation doubles the energy of the two large rectangles ($[2^{b-3} + 2^{b-1}] \times 2^{b-1}$) and then subtracts the energy of the inner square ($2^{b-3} \times 2^{b-1}$). The energy of the inner square is

$$E_{x(\text{inner})} = \frac{d^2}{6} (2^{b-1} - 1).$$

(1.283)
The total sum of energies for all the data symbols in the inner-square-plus-two-side-rectangles is (looking only at one quadrant, and multiplying by 4 because of symmetry)

\[
\mathcal{E} = \frac{d^2}{4} \left(4 \sum_{k=1}^{\frac{b-3}{2}} \sum_{l=1}^{\frac{2b-5}{2}} [(2k-1)^2 + (2l-1)^2] \right) - \frac{d^2}{4} \left[3 \cdot \frac{b-5}{2} \left(\frac{2^{\frac{b-3}{2}} - 2^{\frac{b-1}{2}}}{6} \right) + 2^{\frac{b-5}{2}} \left(\frac{27 \cdot 2^{\frac{b-9}{2}} - 3 \cdot 2^{\frac{b-3}{2}}}{6} \right) \right] + \frac{d^2}{4} \left[2^{b-3} - 2^{b-2} + 9 \cdot 2^{b-5} - 2^{b-2} \right] - \frac{d^2}{4} \left[\frac{13}{32} 2^{b-1} \right].
\] (1.284)

Then

\[
\mathcal{E}_x = \frac{2\mathcal{E} - 2^{b-1}\mathcal{E}_x(\text{inner})}{2^b} = \frac{d^2}{4} \left(\frac{26}{32} 2^b - 1 - \frac{2}{3} 2^{b-2} + \frac{21}{32} \right)
\] (1.289)

\[
= \frac{d^2}{4} \left(\frac{13}{16} - \frac{1}{6} \right) 2^b - \frac{2}{3}
\] (1.290)

\[
= \frac{d^2}{4} \left(\frac{31}{48} 2^b - \frac{2}{3} \right) = \frac{d^2}{6} \left[\frac{31}{32} M - 1 \right]
\] (1.291)

The minimum distance \(d_{\text{min}}\) can be computed from \(\mathcal{E}_x\) (or \(\bar{\mathcal{E}}_x\)) and \(M\) by

\[
d = \sqrt{\frac{6\mathcal{E}_x}{31/32 M - 1}} = \sqrt{\frac{12\mathcal{E}_x}{31/32 M - 1}} = \sqrt{\frac{12\mathcal{E}_x}{31/48 b - 1}}.
\] (1.292)

In (1.291), for large \(M\), \(\mathcal{E}_x \approx \frac{31d^2}{192} M = \frac{31d^2}{192} 4^b\), the same as the continuous approximation.

The following recursion derives from increasing the number of bits, \(b\), in a QAM cross constellation while maintaining constant minimum distance:

\[
\mathcal{E}_x(b+1) = 2 \cdot \mathcal{E}_x(b) + \frac{d^2}{6}.
\] (1.293)

As with the square QAM constellation asymptotically the average energy increases by 3 dB for each added bit per two dimensional symbol.

QAM CR’s error probability has a bound that derives from a lower bound on a correct decision's conditional probability being in one of two categories:

1. **inner** CR constellation symbols \(\left\{ 2^b - 4 \left(3 \cdot 2^{\frac{b-3}{2}} - 2 \cdot 2^{\frac{b-5}{2}} \right) \right\} = \left\{ 2^b - 4 \left(2^{\frac{b-1}{2}} \right) \right\}\) with four nearest neighbors

\[
P_{c/\text{inner}} = \left(1 - 2Q \left[\frac{d_{\text{min}}}{2\sigma} \right] \right)^2
\] (1.294)

2. **side** CR constellation symbols \(4 \left(3 \cdot 2^{\frac{b-3}{2}} - 2 \cdot 2^{\frac{b-5}{2}} \right) = 4 \left(2^{\frac{b-1}{2}} \right)\) with three nearest neighbors.

(This calculation is only a bound because some of the side points have fewer than three neighbors at distance \(d_{\text{min}}\))

\[
P_{c/\text{outer}} = \left(1 - Q \left[\frac{d_{\text{min}}}{2\sigma} \right] \right) \left(1 - 2Q \left[\frac{d_{\text{min}}}{2\sigma} \right] \right).
\] (1.295)
The probability of a correct decision is then, abbreviating \(Q = Q\left[\frac{d_{\text{min}}}{2\sigma}\right] \).

\[
P_c \geq \frac{1}{M} \left[4 \left(2^{\frac{b-1}{2}} \right) (1 - Q)(1 - 2Q) \right] + \frac{1}{M} \left[\left\{ 2^b - 4 \left(2^{\frac{b+1}{2}} \right) \right\} (1 - 2Q)^2 \right] \tag{1.296}
\]

\[
= \frac{1}{M} \left[4 \cdot 2^{\frac{b+1}{2}} (1 - 3Q + 2Q^2) + \left[2^b - 2^{\frac{b+1}{2}} \right] (1 - 4Q + 4Q^2) \right] \tag{1.297}
\]

\[
= 1 - \left[-2^{\frac{3b}{2}} + 4 \right] Q + \left[2^{\frac{3b}{2}} - 2 \cdot 2^{\frac{b+1}{2}} + 4 \right] Q^2 \tag{1.298}
\]

Thus, the symbol-error probability satisfies

\[
P_e \leq 4 \left(1 - \frac{1}{\sqrt{2M}} \right) Q \left[\frac{d_{\text{min}}}{2\sigma} \right] - 4 \left(1 - \sqrt{\frac{2}{M}} \right) \left(Q \left[\frac{d_{\text{min}}}{2\sigma} \right] \right)^2 \tag{1.300}
\]

\[
< 4 \left(1 - \frac{1}{\sqrt{2M}} \right) Q \left[\frac{d_{\text{min}}}{2\sigma} \right] < 4Q \left[\frac{d_{\text{min}}}{2\sigma} \right] \text{.} \tag{1.301}
\]

SQ CR’s average number of nearest neighbors is \(4(1 - 1/\sqrt{2M}) \); thus the NNUB is again accurate. The normalized error probability is

\[
P_e \leq 2 \left(1 - \frac{1}{2^{b+3}} \right) Q \left[\frac{d_{\text{min}}}{2\sigma} \right] \text{,} \tag{1.302}
\]

which agrees with the PAM result with an additional constellation bit, or equivalently an extra .5 bit per dimension. To evaluate (1.302), Equation 1.292 relates that

\[
\left(\frac{d_{\text{min}}}{2\sigma} \right)^2 = 3 \frac{\text{SNR}}{32(M - 1)} \tag{1.303}
\]

Table 1.4 lists the incremental energies and required SNR for QAM cross constellations in a manner similar to Table 1.3.

<table>
<thead>
<tr>
<th>(b = 2b)</th>
<th>(\frac{d_{\text{min}}}{2\sigma} \text{ for } P_e = 10^{-6} \approx 2Q \left[\frac{d_{\text{min}}}{2\sigma} \right])</th>
<th>(\text{SNR} = \frac{[31/32]M - 1}{3} \cdot 10^{1.37})</th>
<th>(\text{SNR increase} = \frac{[31/32]M - 1}{32/32(M - 1) - 1})</th>
<th>(\text{dB/bit})</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>32</td>
<td>13.7dB</td>
<td>23.7dB</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>13.7dB</td>
<td>29.8dB</td>
<td>6.0dB</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>13.7dB</td>
<td>35.8dB</td>
<td>6.0dB</td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
<td>13.7dB</td>
<td>41.8dB</td>
<td>6.0dB</td>
</tr>
<tr>
<td>13</td>
<td>8192</td>
<td>13.7dB</td>
<td>47.8dB</td>
<td>6.0dB</td>
</tr>
<tr>
<td>15</td>
<td>32,768</td>
<td>13.7dB</td>
<td>53.8dB</td>
<td>6.0dB</td>
</tr>
</tbody>
</table>

Table 1.4: QAM Cross constellation energies.

1.3.4.2.3 Vestigial Sideband Modulation (VSB), CAP, and OQAM There are many equivalent basis function choices for QAM. These choices sometimes have value from an implementation perspective. From a performance perspective, they all perform the same according to this section’s AWGN fundamentals. In successive one-shot transmission, the basis functions must be orthogonal to one another for all integer-symbol-period time translations. Then successive demodulator-output samples at integer multiples of \(T \) will be independent; then also, the AWGN-one-shot optimum receiver’s repeated successive use detects successive messages optimally (see Chapter 3 successive transmission degradation in the presence of “intersymbol interference” on band-limited AWGN channels.) The PAM basis function always exhibits this desirable translation property on the AWGN, and so do the QAM basis functions as long as \(\omega_c \geq \pi/T \). The QAM basis functions are not unique with respect to satisfaction of the translation property, with VSB/SSB, CAP, and OQAM all being variants.
VSB Vestigial sideband modulation (VSB) is an alternative modulation method that is equivalent to QAM. In QAM, typically the same unit-energy basis function \((\sqrt{1/T} \cdot \text{sinc}(t/T))\) is “double-side-band modulated” independently by the same carrier’s sine and cosine to generate the two QAM basis functions. In VSB, a double bandwidth sinc function and its Hilbert transform (see Section 1.3.5 for a discussion of Hilbert transforms) are “single-side-band modulated.” The two VSB basis functions are \(^{32}\)

\[
\varphi_1(t) = \sqrt{\frac{1}{T}} \cdot \text{sinc} \left(\frac{2t}{T} \right) \cdot \cos \omega_c t
\]

\[
\varphi_2(t) = \sqrt{\frac{1}{T}} \cdot \text{sinc} \left(\frac{t}{T} \right) \cdot \sin \left(\frac{\pi t}{T} \right) \cdot \sin \omega_c t
\]

A natural symbol-rate choice for successive transmission with these two basis functions might appear to be 2/T, twice the rate associated with QAM. However, these basis functions’ successive translations by integer multiples of T/2 are not orthogonal – that is \(\langle \varphi_i(t), \varphi_j(t - T/2) \rangle \neq \delta_{ij}\) however, \(\langle \varphi_i(t), \varphi_j(t - kT) \rangle = \delta_{ij}\) for any integer \(k\). Thus, the symbol rate for successive orthogonal transmissions is best 1/T.

VSB designers often prefer to exploit the observation that \(\langle \varphi_1(t), \varphi_2(t - kT/2) \rangle = 0\) for all odd integers \(k\) to implement the VSB transmission system as a time-varying one-dimensional modulation at rate 2/T dimensions per second. Thus, the modulator uses a different basis function on adjacent symbol periods, alternating between the two. The optimum receiver consists of two matched filters to the two basis functions, which have their outputs each sampled at rate 1/T (staggered relative to one another by T/2). The detector interleaves these samples to form a single one-dimensional detected-symbol stream. Nonetheless, different VSB designers may call the VSB constellations by two-dimensional names: For instance, one may hear of 16 VSB or 64 VSB, which are equivalent to 16SQ QAM (or 4PAM) and 64SQ QAM (8PAM) respectively. VSB transmission was initially more convenient for upgrading existing analog systems that were already VSB (i.e., commercial broadcast television before transition to all-digital for instance) to digital systems that use the same bandwidths and carrier frequencies - that is where the carrier frequencies are not centered within the existing band. VSB otherwise has no fundamental performance advantages or differences from QAM.

CAP Carrierless Amplitude/Phase (CAP) transmission systems\(^4\) are also very similar to QAM. The basis functions of QAM are time-varying when \(\omega_c\) is arbitrary – that is, the basis functions on subsequent transmissions may differ. CAP is a method that can eliminate this time variation for any carrier-frequency choice, making the combined transmitter implementation appear “carrierless” and thus time-invariant. CAP has the same one-shot basis functions as QAM, but also has a time-varying encoder constellation when used for successive two-dimensional symbol transmission. The time-varying CAP encoder implements a sequence of additional two-dimensional constellation rotations that the receiver knows and easily removes after the demodulator and just before the detector. The rotation sequence has a phase angle that increases linearly with time. (and virtually omitted when differential encoding - see Subsection 1.3.6 - is implemented).

OQAM Offset QAM (OQAM) or “staggered” QAM uses the alternative basis functions

\[
\varphi_1(t) = \sqrt{\frac{2}{T}} \cdot \text{sinc} \left(\frac{t}{T} \right) \cdot \cos \left(\frac{\pi t}{T} \right)
\]

\[
\varphi_2(t) = -\sqrt{\frac{2}{T}} \cdot \text{sinc} \left(\frac{t - T/2}{T} \right) \cdot \sin \left(\frac{\pi t}{T} \right)
\]

effectively “offseting” the two dimensions by T/2. For one-shot transmission, such offset has no effect (the receiver matched filters effectively re-align the two dimensions) and OQAM and QAM are the same.

\(^{32}\)This simple description is actually single-side-band (SSB), a special case of VSB. VSB uses practical realizable functions instead of the unrealizable sinc functions that simplify fundamental developments here in Chapter 1. Subsection 1.3.6.1 more completely addresses VSB.
For successive transmission, the derivative (rate of change) of \(x(t) \) is less for OQAM than for QAM, effectively reducing transmitted signals’ spurious bandwidth when the sinc functions cannot be perfectly implemented. OQAM signals will never take the value \(x(t) = 0 \), while this value is instantaneously possible with QAM – thus nonlinear transmitter/receiver amplifiers are not as stressed by OQAM. There is otherwise no fundamental performance difference between OQAM and QAM.

1.3.4.2.4 Forney’s Gap The gap, \(\Gamma \), is an approximation introduced by Forney [3] for constellations with \(\bar{b} \geq 1/2 \). This gap is empirically evident in the PAM and QAM tables. Specifically, if one knows an AWGN channel’s SNR, the number of bits that can be transmitted with PAM or QAM is

\[
\bar{b} = \frac{1}{2} \log_2 \left(1 + \frac{\text{SNR}}{\Gamma} \right).
\]

(1.308)

At error probability \(\bar{P}_e = 10^{-6} \), \(\Gamma = 8.8 \) dB. For \(\bar{P}_e = 10^{-7} \), \(\Gamma = 9.5 \) dB. If the designer knows the SNR and the desired performance level (\(\bar{P}_e \)) or equivalently the gap, then the number of bits per dimension (and thus the achievable data rate \(R = \bar{b}/T \)) immediately follow through (1.308). Chapters 2, 8, and 10 introduce more sophisticated encoder designs where the gap can be reduced, ultimately to 0 dB, enabling a highest possible data rate of \(5 \log_2 (1 + \text{SNR}) \), sometimes known as the AWGN’s “channel capacity.” QAM and PAM are thus about 9 dB away in terms of efficient use of SNR from ultimate limits.

1.3.4.3 More Constellation Performance Measures

Having introduced many commonly used constellations, several performance measures compare coded systems’ use of these constellations.

1.3.4.3.1 Coding Gain Of fundamental importance to two systems’ comparison, when they both transmit the same number of bits per dimension, is the coding gain, which specifies one constellation/code’s improvement.

Definition 1.3.19 (Coding Gain) A particular constellation’s coding gain (or loss), \(\gamma \), with data symbols \(\{ x_i \}_{i=0}^{M-1} \) with respect to another constellation with data symbols \(\{ \tilde{x}_i \}_{i=0}^{M-1} \) is

\[
\gamma = \frac{d_{\min}(x)/\bar{E}_x}{d_{\min}(\tilde{x})/\bar{E}_{\tilde{x}}} = \frac{\zeta_x}{\zeta_{\tilde{x}}} ,
\]

(1.309)

where both constellations transmit \(\bar{b} \) information bits per dimension.

A coding gain of \(\gamma = 1 \) (0dB) implies that the two systems perform equally. A positive gain (in dB) means that the constellation with data symbols \(x \) outperforms the constellation with data symbols \(\tilde{x} \). The coding gain effectively causes the \(\bar{E}_x \) to be the same in both systems through normalization to it in both the numerator and denominator of (1.309). Thus it is a fair comparison when with the same \(\bar{b} \) for both systems. An example compares the two constellations in Figures 1.34 and 1.36 and obtains

\[
\gamma = \frac{\zeta_x(8\text{AMPM})}{\zeta_{\tilde{x}}(8\text{PSK})} = \frac{2}{10 \sin^2(\frac{\pi}{8})} \approx 1.37 \text{ (1.4dB)} .
\]

(1.310)

A lattice is a set of vectors in \(N \)-dimensional space that is closed under vector addition – that is, the sum of any two vectors is another vector in the set. A translation of a lattice produces a coset of the lattice. Most good signal constellations are chosen as subsets of lattice cosets. The fundamental volume for a lattice measures the region around a point:
Definition 1.3.20 (Fundamental Volume) A lattice Λ’s fundamental volume $V(\Lambda)$ is the volume of the decision region for any single lattice point $x \in \Lambda$. This decision region is the lattice’s previously defined Voronoi Region, $V(\Lambda)$, with volume $V(\Lambda) = |V(\Lambda)|$. A lattice’s Voronoi Region, $V(\Lambda)$, differs from the constellation’s Voronoi Boundary, V_x, with the latter being the union of $|C|$ of the former $V(\Lambda)$. V_x may follow a different (“shaping”) lattice Λ' that is not equal to, nor even a scaled version of, Λ (which is then the coding lattice).

For example with $M = |C|$, an M-QAM constellation C is M-QAM as $M \to \infty$ is a translated subset (coset) of the two-dimensional rectangular lattice \mathbb{Z}^2, so M-QAM is a translation of \mathbb{Z}^2 as $M \to \infty$. Similarly as $M \to \infty$, the M-PAM constellation becomes a coset of the one dimensional lattice \mathbb{Z}.

The coding gain, γ of one constellation based on x with lattice Λ and volume $V(\Lambda)$ with respect to another constellation with \tilde{x}, $\tilde{\Lambda}$, and $V(\tilde{\Lambda})$ can be rewritten as

$$
\gamma = \left(\frac{\min_{x} \left(\frac{d^2}{V^2/N(\Lambda)} \right)}{\min_{\tilde{x}} \left(\frac{d^2}{V^2/N(\tilde{\Lambda})} \right)} \right) \cdot \frac{V^2}{N(\Lambda)} \frac{E_x}{E_{\tilde{x}}}.
$$

(1.311)

$$
= \gamma_f + \gamma_s \ (dB)
$$

(1.312)

The two quantities on the right in (1.312) are called the fundamental gain γ_f and the shaping gain γ_s respectively.

Definition 1.3.21 (Fundamental Gain) A lattice Λ’s fundamental gain γ_f for a constellation with symbols $x \in C_x \subset \Lambda$, relative to a constellation with symbols $\tilde{x} \in C_{\tilde{x}} \subset \tilde{\Lambda}$ is

$$
\gamma_f = \left(\frac{\min_{x} \left(\frac{d^2}{V^2/N(\Lambda)} \right)}{\min_{\tilde{x}} \left(\frac{d^2}{V^2/N(\tilde{\Lambda})} \right)} \right).
$$

(1.313)

The fundamental gain measures the constellation lattice’s symbol-spacing efficiency without regard to constellation boundary V_x or energy.

Definition 1.3.22 (Shaping Gain) The constellation boundary V_x’s shaping gain γ_s is

$$
\gamma_s = \left(\frac{V^2/N(\Lambda)}{E_x} \right).
$$

(1.314)

The shaping gain measures the constellation boundary V_x’s efficiency for the average energy per dimension, without regard for the constellation’s intra-symbol spacing.

Using the continuous approximation, the designer can extend shaping gain to constellations with different numbers of symbols as

$$
\gamma_s = \left(\frac{V^2/N(\Lambda)}{E_x} \right) \cdot 2^{2\beta(x)}.
$$

(1.315)
When both constellations use the same coding lattice, $\tilde{\Lambda} = \Lambda$, the shaping gain is the ratio of energies, effectively measuring how constellation's symbol-vector packing per energy unit.

Equation (1.235) permits comparison of a hypersphere's shaping gain versus the hypercube composed of $N \to \infty$ uses of PAM, or SQ QAM, as

$$\gamma_s \to \frac{2\pi e}{\sqrt[1/2]{1}} = \frac{\pi e}{6} = 1.53 \text{ dB}$$

(1.316)

a best possible shaping-gain improvement.

1.3.4.3.2 Peak-to-Average Power Ratio (PAR) Design requirements may also limit the system’s peak power. This peak-power constraint can manifest itself in several different ways: For example, a modulator’s Digital-to-Analog Converter (or the demodulator’s Analog-to-Digital Converter) has a finite number of bits (or finite dynamic range), so then the signal peaks can not be arbitrarily large without saturation or clipping. Some channels or modulator/demodulators may include amplifiers or repeaters that saturate at high peak signal voltages. Some design requirements have adjacent-channel energy leakage requirements, particularly where a large peak’s crosstalk causes an impulsive noise “hit” and an unexpected error in the adjacent system. The Peak-to-Average Power Ratio (PAR) measures immunity to these important design constraints.

The peak energy is:

Definition 1.3.23 (Discrete Peak Energy) A constellation’s N-dimensional discrete peak energy is $\mathcal{E}_{\text{peak}}$.

$$\mathcal{E}_{\text{peak}} \triangleq \max_i \sum_{n=1}^{N} x_{in}^2 .$$

(1.317)

A modulated signal’s continuous-time peak energy is

$$\mathcal{E}_{\text{cont}} \triangleq \max_{i,t} |x_i(t)|^2 \geq \mathcal{E}_{\text{peak}} .$$

(1.318)

$\mathcal{E}_{\text{cont}}$ is important in analog amplifier design or equivalently in the filters $\varphi_n(t)$’s implementations. The peak energy concept allows precise definition of the PAR:

Definition 1.3.24 (Peak-to-Average Power Ratio) The N – dimensional Peak-to-Average Power Ratio, PAR_X, for N-dimensional Constellation is

$$\text{PAR}_X = \frac{\mathcal{E}_{\text{peak}}}{\mathcal{E}_X}$$

(1.319)

For example 16SQ QAM has a PAR of 1.8 in two dimensions. For each of the one-dimensional 4-PAM constellations that constitute a 16SQ QAM constellation, the one-dimensional PAR is also 1.8. These two ratios need not be equal, however, in general. For instance, for 32CR, the two-dimensional PAR is 34/20 = 1.7, while observation of a single dimension when 32CR is used gives a one-dimensional PAR of $25/(.75(5) + .25(25)) = 2.5$. Typically, the continuous-time peak squared signal energy is inevitably yet higher in QAM constellations and depends on the choice of $\varphi(t)$.

87
1.3.4.4 Hexagonal Signal Constellations

The most dense two-dimensional packing of regularly spaced points is Figure 1.47’s hexagonal \(A_2 \) lattice. The Voronoi region volume (area) is

\[
V(A_2) = 6\left(\frac{1}{2}\right)(\frac{d}{\sqrt{3}})^2 = \frac{d^2\sqrt{3}}{2} .
\]

(1.320)

If \(d_{\text{min}} = d \) in both constellations, then the hexagonal \(A_2 \)’s fundamental gain over the QAM constellation’s \(Z^2 \) lattice is

\[
\gamma_f = \frac{d^2}{\sqrt{3} d^2} = \frac{2}{\sqrt{3}} = 0.625 \text{ dB} .
\]

(1.321)

Hexagonal constellation’s encoder and detector may be more complex than those for QAM.

1.3.5 Baseband Modulation

Baseband modulation’s basis functions have most energy at low frequencies. The majority of Sections 1.2’s - 1.3’s modulation methods are baseband, although a few (like PSK and QAM) use basis functions that have energy centered at or near a carrier or center frequency \(\omega_c = 2\pi f_c \). These latter passband modulation methods are useful in many applications where transmission occurs over a limited narrow bandwidth, typically centered at or near this passband modulation’s carrier frequency. Digital television transmission on the USA’s Channel 2 has carrier frequency \(f_c = 52 \text{ MHz} \) and non-negligible energy only between 50 to 56 MHz. (Channels \(i = 3 \) through 60 typically are also 6 MHz wide using carrier frequencies of \(f_{c,i} = 52 + (i - 2) \cdot 6 \text{ MHz} \).) Cellphones use carrier frequencies from \(f_c = 600 \text{ MHz} \) to 70 GHz, but have nonzero energy over a narrow band that is typically from \(W = 1 \text{ MHz} \) to 100 MHz wide. Cellular transmission systems effectively combine many narrow carriers, each of width typically 15 kHz wide as addressed in Chapter 4. Digital satellite transmission uses QAM and carriers \(12 \text{ GHz} \leq f_c \leq 17 \text{ GHz} \) bands with transponder bandwidths of about \(W = 26 \text{ MHz} \). There are numerous other examples. Signal energy is present only in these narrow “passbands” and consequently subject to filtering. This section teaches a common analysis method for such systems without explicit need for the carrier frequency, nor its inclusion in the basis functions, nor even in the channel transfer function. This theory of passband system analysis allows a framework for later chapters’ important suboptimal receivers for both baseband and passband modulation.
Passband transmission-system design typically addresses a band-limited channel that generalizes earlier sections’ AWGN model by adding Figure 1.48’s filter $h(t)$. When this filter’s $h(t) \neq \delta(t)$, $h(t)$ models the physical channel’s band-limiting effect, which may be caused by transmitter or receiver filters or by transmission lines’, or wireless multiple-path’s, physical finite-bandwidth constraints. The filter $h(t)$ distorts the transmitted modulated signal $x(t)$. Preferably, $x(t) * h(t) \approx x(t)$, but fixed modulator designs may not be able to ensure small distortion. All channels inevitably attenuation high frequencies, but many channels also attenuate low frequencies. Furthermore, different frequencies may have different attenuation levels in real channels. Whether modeling filters or actual physical effects, an imperfect channel impulse response $h(t) \neq \delta(t)$ affects transmission performance.

This section develops new complex-baseband models that apply to either the real baseband case (like PAM), where trivially all imaginary components are zero, and to the passband case (like QAM) where all imaginary components are not necessarily zero, allowing a single complex-symbol-vector theory of receiver processing in the remainder of this text.

1.3.5.1 Passband Representations and Terminology

A passband modulated signal concentrates energy in the vicinity of a carrier frequency $\omega_c = 2\pi f_c$ for transmission through a passband channel that only passes energy in this same frequency band. Passband modulation usually includes a “lowpass” modulated signal’s multiplication by a sinusoid to shift energy towards the frequencies near ω_c. Such passband modulation finds use on channels that do not pass DC or on channels that several signals simultaneously share in non-overlapping frequency bands (and thus have different carrier frequencies).

This subsection first investigates a number of equivalent representations of a passband signal, the most interesting of which is the baseband-equivalent signal in Subsection 1.3.5.1.1. The design replaces the original modulated passband signal with the baseband-equivalent signal in transmission analysis. Subsection 1.3.5.1.1’s objective is the generation of such an equivalent signal from the original signal. Subsection 1.3.5.1.2 essentially shows baseband-equivalent signals’ frequency content doubles and translates to DC. Since all baseband signals center transmitted energy at DC, Subsection 1.3.5.1.4 shows that a common baseband-processing method applies to any passband channel. Figure 1.54 summarizes this entire subsection.

1.3.5.1.1 Passband Signal Equivalents

The real-valued signal $x(t)$ is a passband signal when its nonzero Fourier transform values are near ω_c, as in Figure 1.49. Passband signals never have DC content, so $X(0) = 0$.
Definition 1.3.25 (Carrier-Modulated Signal) A carrier-modulated signal is any passband signal that satisfies
\[x(t) = a(t) \cdot \cos(\omega_c t + \theta(t)) , \tag{1.322} \]
where \(a(t) \) is the modulated signal’s time-varying amplitude or envelope and \(\theta(t) \) is its time-varying phase. \(\omega_c = 2\pi f_c \) is the carrier frequency (in radians/sec; \(f_c \) is in Hz).

The carrier frequency \(\omega_c \) is sufficiently large with respect to \(a(t) \)'s amplitude and phase variations that modulated signal’s power spectral density has no significant energy at or near \(\omega = 0 \). See Figure 1.49, wherein the nonzero spectrum of \(X(\omega) \) is in the passband \(\omega_{\text{low}} < |\omega| < \omega_{\text{high}} \). In digital communication, \(x(t) \) has an equivalent quadrature form using the trigonometric identity \(\cos(u + v) = \cos(u) \cos(v) - \sin(u) \sin(v) \), leading to a quadrature decomposition:

Definition 1.3.26 (Quadrature Decomposition) The quadrature decomposition of a carrier modulated signal is
\[x(t) = x_I(t) \cdot \cos(\omega_c t) - x_Q(t) \cdot \sin(\omega_c t) , \tag{1.323} \]
where \(x_I(t) = a(t) \cdot \cos(\theta(t)) \) is the modulated signal’s time-varying inphase component, and \(x_Q(t) = a(t) \cdot \sin(\theta(t)) \) is its time-varying quadrature component.

Relationships determining \((a(t), \theta(t))\) from \((x_I(t), x_Q(t))\) are
\[a(t) = \sqrt{x_I^2(t) + x_Q^2(t)} , \tag{1.324} \]
and
\[\theta(t) = \tan^{-1} \left(\frac{x_Q(t)}{x_I(t)} \right) . \tag{1.325} \]

In (1.325), the inverse tangent applies with known individual polarities of both numerator and denominator, so there is no quadrant ambiguity in computing \(\theta(t) \).

Passband processing and analysis eliminate explicit carrier-frequency \(\omega_c \) consideration and directly use only the inphase and quadrature components. These inphase and quadrature components combine into a two-dimensional vector, or into an equivalent complex signal. By convention, a graph of a quadrature-modulated signal plots the inphase component along the real axis and the quadrature component along the imaginary axis as Figure 1.50 shows.
Figure 1.50: Decomposition of baseband-equivalent signal.

The resultant complex vector \(x_{bb}(t) \) is the complex baseband-equivalent signal.

Definition 1.3.27 (Baseband-Equivalent Signal) The complex baseband-equivalent signal for \(x(t) \) in (1.322) is

\[
x_{bb}(t) \triangleq x_I(t) + jx_Q(t),
\]

where \(j = \sqrt{-1} \).

The baseband-equivalent signal expression no longer explicitly contains the carrier frequency \(\omega_c \). Another complex representation that explicitly uses \(\omega_c \) is the analytic equivalent signal for \(x(t) \):

Definition 1.3.28 (Analytic-Equivalent Signal) The analytic-equivalent signal for \(x(t) \) in (1.322) is

\[
x_A(t) \triangleq x_{bb}(t) \cdot e^{j\omega_c t}.
\]

The original real-valued passband signal \(x(t) \) is the real part of the analytic-equivalent signal:

\[
x(t) = \Re\{x_A(t)\}.
\]

The Hilbert Transform of \(x(t) \), or \(\tilde{x}(t) \), is the analytic signal’s imaginary part

\[
\tilde{x}(t) = \Im\{x_A(t)\}.
\]

(Appendix B provides more detail on the Hilbert Transform and a proof of (1.329).) Finally, the inphase component \(x_I(t) \) and the quadrature component \(x_Q(t) \) derive from the signal \(x(t) \) and its Hilbert transform \(\tilde{x}(t) \) as (using \(x_{bb}(t) = x_I(t) + jx_Q(t) = x_A(t) \cdot e^{-j\omega_c t} \)):

\[
x_I(t) = x(t) \cdot \cos(\omega_c t) + \tilde{x}(t) \cdot \sin(\omega_c t),
\]

\[
x_Q(t) = \tilde{x}(t) \cdot \cos(\omega_c t) - x(t) \cdot \sin(\omega_c t).
\]

33This use of “analytic” should not be confused with the mathematician’s definition of an analytic signal, which means the signal and all its derivatives are absolutely integrable over a specified domain - often used in Laplace and Z/D Transforms. In fact the “complex-analytic” signals developed here would not strictly satisfy this mathematical definition because of the zero-energy constraint at low frequencies.
Thus, four equivalent forms for representing a real passband signal $x(t)$ with carrier frequency ω_c are:

1. magnitude, phase
 $a(t), \theta(t)$
2. inphase, quadrature
 $x_I(t), x_Q(t)$
3. complex baseband
 $x_{bb}(t)$
4. analytic
 $x_A(t)$

EXAMPLE 1.3.8 (Translation between equivalent representations:)

A passband QAM signal is

$$x(t) = \text{sinc}(10^6 t) \cdot \cos(2\pi 10^7 t) + 3 \cdot \text{sinc}(10^6 t) \cdot \sin(2\pi 10^7 t)$$ \hspace{1cm} (1.333)

The carrier frequency is 10 MHz and the symbol period is 1 μs. The inphase and quadrature components are

$$x_I(t) = \text{sinc}(10^6 t)$$ \hspace{1cm} (1.334)
$$x_Q(t) = -3 \cdot \text{sinc}(10^6 t)$$ \hspace{1cm} (1.335)

so

$$x_{bb}(t) = (1 - 3j) \cdot \text{sinc}(10^6 t)$$ \hspace{1cm} (1.336)

The baseband signal’s amplitude and phasel are

$$a(t) = \sqrt{10} \cdot \text{sinc}(10^6 t)$$ \hspace{1cm} (1.337)
$$\theta(t) = \tan^{-1}\left[\frac{-3}{1}\right] = -71.6^\circ$$ \hspace{1cm} (1.338)

Thus,

$$x(t) = \sqrt{10} \cdot \text{sinc}(10^6 t) \cdot \cos(\omega_c t - 71.6^\circ)$$ \hspace{1cm} (1.339)

Finally,

$$x_A(t) = (1 - 3j) \cdot \text{sinc}(10^6 t) \cdot e^{j2\pi 10^7 t}$$ \hspace{1cm} (1.340)

Subsection 1.3.5.1.2 next considers the Fourier Transform relationships of $x(t), x_{bb}(t)$, and $x_A(t)$.

1.3.5.1.2 Frequency Spectrum of Analytic- and Baseband-Equivalent Signals

Figure 1.51 illustrates equations’ use (1.328) and (1.329) to represent the analytic signal as

$$x_A(t) = x(t) + j\tilde{x}(t)$$ \hspace{1cm} (1.341)
The Fourier Transform of (1.341) is\footnote{If \(\hat{x}(t) \) is the Hilbert transform of \(x(t) \), then the Fourier transform of \(\hat{x}(t) \) is \(-\text{sgn}(\omega)X(\omega)\), where \(X(\omega) \) is the Fourier Transform of \(x(t) \), as shown in Appendix C.}

\[X_A(\omega) = \{1 + \text{sgn}(\omega)\} \cdot X(\omega) \]
\[= \begin{cases}
2 \cdot X(\omega) & \omega > 0 \\
X(0) = 0 & \omega = 0 \\
0 & \omega < 0
\end{cases} \]

The analytic equivalent signal, \(x_A(t) \), has nonzero value only for \(x(t) \)’s positive frequencies and is identically zero for negative frequencies. The real signal \(x(t) \)'s Fourier transform \(X(\omega) \) has two symmetry properties: The real part \(\Re\{X(\omega)\} \) is even in \(\omega \), while the imaginary part \(\Im\{X(\omega)\} \) is odd in \(\omega \). Knowledge of only the non-negative frequencies of \(X(\omega) \), or equivalently the analytic signal, is sufficient for \(X(\omega) \)'s reconstruction. This confirms the analytic signal \(x_A(t) \)'s true “equivalence” with the original signal \(x(t) \).

Using Equation (1.327), the baseband-equivalent signal’s Fourier transform is simply the analytic signal’s Fourier transform translated in frequency by \(\omega_c \). Thus

\[X_A(\omega) = X_{bb}(\omega - \omega_c) \]

and

\[X_{bb}(\omega) = X_A(\omega + \omega_c) \]

Use of (1.327) and (1.328) allows the passband signal \(x(t) \)'s reconstruction from the baseband-equivalent signal \(x_{bb}(t) \) and the carrier frequency \(\omega_c \). The baseband-equivalent signal, in general, may be complex-valued, and thus Figure 1.52 shows an example spectrum for \(x_{bb}(t) \) that is asymmetric about \(\omega = 0 \).

\[X_{bb}(\omega) \]

\(\omega_c - \omega \)

\(\omega - \omega_c \)

\(0 \)

\(\omega_{\text{sh}} - \omega_c \)

Figure 1.52: Baseband signal spectrum.

EXAMPLE 1.3.9 (Continuing Example) Figure 1.53 shows the original, baseband-, and analytic-equivalent spectra of the passband signal

\[x(t) = \text{sinc}(10^6t) \cdot \cos(2\pi 10^7t) + 3 \cdot \text{sinc}(10^6t) \cdot \sin(2\pi 10^7t) \]

The two complex signals’ Fourier-transform magnitude doubles because these complex representations’ nonzero signal components add together in a single positive-frequency band.
1.3.5.1.3 Generation of the baseband equivalent

Figure 1.51’s structure generates a signal’s baseband equivalent, in which the second complex multiply simply is 4 real multiplies using Euler’s formula $e^{j\omega_c t} = \cos(\omega_c t) + j\sin(\omega_c t)$. The first multiply by j alone is symbolic and simply means that the receiver processing views that path’s signal as the imaginary part.

1.3.5.1.4 Passband Channels

The filtered passband channel has a simple input/output relationship between the baseband equivalent signals. The output baseband equivalent is the multiplication of the baseband input spectra by the channel’s Fourier transform translated from ω_c to DC, as this section shows. Filtering does affect the ML detector performance and complexity, which is discussed further in upcoming Subsection 1.3.7.1 and Chapter 3. In particular, if a passband linear channel processes a passband input signal, passband analysis directly determines the corresponding baseband- and analytic-equivalent filter-output representations for $y(t)$ in terms of the channel $h(t)$ and the input $x(t)$. Figure 1.54 summarizes the results that this section finds.
1.3.5.1.5 Equivalent representations of the channel response. Any of the previous subsections four passband-signal representations \{x_{bb}(t), x_A(t), x_I(t) and x_Q(t)\} apply to the channel's impulse response and/or Fourier transform by substitution of \(h\) for \(x\) in the same equations. For instance, a linear time-invariant channels with real-valued impulse response \(h(t)\) has analytic-equivalent channel \(h_A(t)\) as

\[
h_A(t) \triangleq h(t) + jh(t) .
\]
(1.347)

Similarly in the frequency domain,

\[
H_A(\omega) = \{1 + \text{sgn}(\omega)\} \cdot H(\omega) .
\]
(1.348)

The baseband-equivalent channel follows the same equations as the baseband equivalent signal, except the carrier frequency \(\omega_c\) is set equal to that of the input, and output, signals.

Definition 1.3.29 (Baseband Equivalent Channel (at carrier frequency \(\omega_c\)))

The baseband equivalent channel at any carrier frequency \(\omega_c\) is

\[
h_{bb}(t) \triangleq h_A(t) \cdot e^{-j\omega_c t} .
\]
(1.349)

For valid application of the term “baseband equivalent”, the carrier frequency should be sufficiently large to guarantee that \(h_{bb}(t)\) has no significant energy content at frequencies \(|\omega| > \omega_c\), i.e., \(|H_{bb}(\omega)| = 0, \forall |\omega| > \omega_c\).

1.3.5.1.6 The equivalent views of channel input/output relations Figure 1.54’s passband-signal’s frequency-domain representation (at the top) is

\[
Y(\omega) = H(\omega) \cdot X(\omega) .
\]
(1.350)
Multiplying both sides of (1.350) by \(1 + \text{sgn}(\omega)\) leads to (middle of Figure 1.54)

\[
Y_A(\omega) = H(\omega) \cdot X_A(\omega)
\]

\[
\Rightarrow Y_A(\omega) = \left\{H(\omega) \cdot \frac{1}{2} \cdot (1 + \text{sgn}(\omega))\right\} \cdot X_A(\omega) = \left[\frac{1}{2} \cdot H_A(\omega)\right] \cdot X_A(\omega),
\]

where (1.352) follows because the input has nonzero spectra only for positive frequencies. Thus, only the channel filtering at those same positive frequencies (recalling that the factor \(\left(\frac{1}{2}\right) \cdot [1 + \text{sgn}(\omega)] = 0 \forall \omega < 0\)) has interest. More importantly, since the linear time-invariant passband channel \(h(t)\) only scales and phase shifts each frequency independently, the output \(y(t)\) has its power spectral density concentrated in the same frequency region as the input \(x(t)\). Shift of the output spectrum \(y(t)\) down by \(\omega_c\) yields

\[
Y_{bb}(\omega) = Y_A(\omega + \omega_c) = \left[\frac{1}{2} H_A(\omega + \omega_c)\right] X_A(\omega + \omega_c)
\]

\[
= \left[\frac{1}{2} H_{bb}(\omega)\right] X_{bb}(\omega)
\]

\[
= H(\omega + \omega_c) \cdot X_{bb}(\omega) \quad \omega > -\omega_c,
\]

which appears at the bottom of Figure 1.54. This leads to the definition of the baseband equivalent system

Definition 1.3.30 (Baseband Equivalent System) The baseband equivalent system for a passband system described by \(y(t) = x(t) * h(t)\), where \(x(t)\) is a passband signal,

\[
y_{bb}(t) = \left(x_{bb}(t) * \frac{1}{2} h_{bb}(t)\right)
\]

or

\[
Y_{bb}(\omega) = H(\omega + \omega_c) \cdot X_{bb}(\omega)
\]

Obtaining the baseband equivalent channel is easy! Simply slide the channel’s Fourier transform response down to DC. Because the channel may be asymmetric with respect to \(\omega_c\), the baseband equivalent channel can be complex and usually is. The baseband-equivalent channel representation removes the notational complexity of cosines, sines, and carrier frequencies. A common analysis framework thus applies to any channel with any carrier frequency, which facilitates many digital-transmission analyses. This is why baseband-equivalent channels dominate in their use in digital-transmission analysis. The analysis convolves the baseband-equivalent input with the complex channel corresponding to \(H(\omega + \omega_c)\) to get the baseband-equivalent output. A channel that is not passband, but rather initially real baseband, simply corresponds to the baseband equivalent input/output representation with all imaginary parts zeroed, and \(H(\omega)\) used directly \((\omega_c = 0)\).

The input/output relationships can thus be summarized as follows: For the passband signals and systems,

\[
y(t) = x(t) * h(t)
\]

\[
Y(\omega) = X(\omega) \cdot H(\omega).
\]

For the analytic-equivalent system,

\[
y_A(t) = x_A(t) * \frac{1}{2} h_A(t)
\]

\[
Y_A(\omega) = X_A(\omega) \cdot H(\omega) \quad \forall \omega \geq 0.
\]

\(^{35}\)or a smaller region if the channel zeroes a band
For the baseband equivalent system,

\[y_{bb}(t) = x_{bb}(t) \ast \frac{1}{2} h_{bb}(t) \quad (1.362) \]

\[Y_{bb}(\omega) = X_{bb}(\omega) \cdot H(\omega + \omega_c) \forall \omega > -\omega_c. \quad (1.363) \]

Any of these three equivalent relations (and \(\omega_c \)) fully describe the passband system.

EXAMPLE 1.3.10 (Bandpass channel for previous bandpass signals) A channel impulse response is \(h(t) = 2 \times 10^6 \cdot \text{sinc}(10^6 t) \cdot \cos(2\pi 10^7 t) \) corresponds to

\[H(f) = \begin{cases}
1 & |f| \leq 5 \times 10^6 \\
0 & \text{elsewhere}
\end{cases} \quad (1.364) \]

Then

\[h_I(t) = 2 \times 10^6 \cdot \text{sinc}(10^6 t) \]

and

\[h_Q(t) = 0, \]

so that \(h_{bb}(t) = h_I(t) \) or

\[H_{bb}(f) = \begin{cases}
2 & |f| \leq 500 \text{ kHz} \\
0 & \text{elsewhere}
\end{cases} \quad (1.364) \]

Using Examples 1.3.8 and 1.3.9’s signal as the channel input, the corresponding channel output is

\[Y_{bb}(f) = H(f + f_c) \cdot X_{bb}(f) = 1 \cdot X_{bb}(f) \quad |f| < 500 \text{ kHz} \quad (1.365) \]

or

\[x_{bb}(t) \ast \frac{1}{2} h_{bb}(t) = x_{bb}(t) = (1 - 3j) \cdot \text{sinc}(10^6 t). \quad (1.366) \]

Zero quadrature-channel component, or \(h_Q(t) = 0 \), does not mean that no quadrature signal components pass to the channel output – it means that inphase components remain inphase components at the channel output, and quadrature components similarly then remain quadrature components at the channel output, otherwise known as **zero phase distortion**. Zero phase distortion also occurs when the phase is linear versus frequency, in which case the phase’s negative slope corresponds only to each component’s delay, but no phase crosstalk.

Appendix B extends this section’s results to passband random processes (this section only considered deterministic signals) on passband deterministic channels. The next subsection considers additive random noise at the channel output.

1.3.5.2 Baseband-Equivalent AWGN Channel

This subsection investigates a passband filtered AWGN channel’s action on transmitted signals, enabling a common analysis of real (e.g., PAM inputs) and complex (e.g., QAM) channels. Appendix B’s passband-random-process results find use here, so familiarity with that appendix is helpful, although not completely necessary. Figure 1.55 summarizes a scaling factor that appears, explicitly or tacitly, in all passband-random-process developments. This simple scale factor maintains consistent analysis in all regards with those appearing earlier in this chapter.
Figure 1.55: Scaling for passband white Gaussian noise

Figure 1.55a’s receiver processes the channel output \(y(t) \) by the cascade of a scale factor \(\frac{1}{\sqrt{2}} \) and a phase splitter to generate a baseband equivalent signal \(\hat{y}_{bb}(t) \). Communication engineers often drop the “cup” so that the splitter output is simply \(y_{bb}(t) \), implying the scaling factor’s inclusion to avoid notational proliferation. Generally speaking, the phase splitter adds a signal to \(j \) times its own Hilbert transform. A random processes’ Hilbert transform has the same power as the original process (Appendix B). Thus, the phase splitter generally doubles power. The scale factor \(\frac{1}{\sqrt{2}} \) that precedes Figure 1.55’s phase splitter causes the power of \(\hat{y}_{bb}(t) \) and \(y(t) \) to be the same. The power-scaling occurs equally for both the noise and signal, since both are present in the channel output \(y(t) \). So, performance remains the same (no matter what the scale factor is), and the ratio of minimum distance to noise standard deviation also remains invariant under any scaling. Nonetheless, Figure 1.55’s particular scaling makes the ensuing analysis consistent with this chapter’s earlier real-channel results when complex signals’ use generalizes designs.

For analysis, the scale factor can be “pushed back” through the channel and to the noise, and the Figure 1.55b’s baseband-equivalent system corresponds to Figure 1.55’s system with the explicit baseband-input-signal scaling. The scale factor then occurs separately in each of the output’s noise and signal components. The next two subsections investigate this scaling and illustrate its consistency with previous results. Since there is a factor of \(1/\sqrt{2} \) in both inphase and quadrature QAM basis functions, this factor then is already present conceptually in Figure 1.55c’s equivalent system, and thus the scaled noise \(\frac{n_{bb}(t)}{\sqrt{2}} \) and the baseband channel \(H(\omega + \omega_c) \) are the proper combination to represent the filtered AWGN with complex baseband input symbol \((x_1 + jx_2) \) and the QAM basis-function component \(\varphi(t) \). The noise per dimension also remains \(\frac{N_0}{2} \).

1.3.5.2.1 Noise Scaling

Appendix D shows that a random process’ analytic-equivalent power spectral density is four times the original signal’s power spectral density for \(\omega \geq 0 \) (and is zero for \(\omega < 0 \)), which tacitly implies the random process power’s doubling.\(^{36}\)

Since the scaled WGN, \(n_{bb}(t)/\sqrt{2} \), in Figure 1.55 has power spectral density,

\[
S_n(\omega) = \frac{N_0}{4},
\]

(1.367)

\(^{36}\)The autocorrelation of the analytic equivalent noise is \(r_A(\tau) = 2(r_n(\tau) + j\varphi_n(\tau)) \). See Appendix B - FIX THIS - for more details.
the power spectrum of the analytic equivalent of \(n_{bb}(t)/\sqrt{2} \) is

\[
S_A(\omega) = \begin{cases}
N_0 & \omega > 0 \\
\frac{N_0}{2} & \omega = 0 \\
0 & \omega < 0
\end{cases}.
\] (1.368)

The baseband-equivalent noise has power spectrum that simply translates \(S_A(\omega) \) to baseband, or

\[
S_{bb}(\omega) = \begin{cases}
N_0 & \omega > -\omega_c \\
\frac{N_0}{2} & \omega = -\omega_c \\
0 & \omega < -\omega_c
\end{cases}.
\] (1.369)

Strictly speaking, \(S_A(\omega) \) and \(S_{bb}(\omega) \) do not correspond to white noise. However, practical systems will always use a carrier frequency that is at least equal to the signal frequency, \(\omega_{\text{high}} \), that corresponds to the highest-frequency nonzero baseband signal component — that is, the design always modulates with a carrier frequency large enough to “get away” from DC. In this case, the baseband equivalent’s power spectrum appears as if it were “white” or flat at \(N_0 \) for all frequencies of practical interest. This baseband demodulated noise signal is complex AWGN with power spectral density \(N_0 \), and correspondingly power spectral density \(\frac{N_0}{2} \) for each real dimension.

For Figure 1.55’s scaled phase-splitting arrangement, the baseband-equivalent WGN is:

Definition 1.3.31 (Baseband Equivalent WGN) Baseband Equivalent White Gaussian Noise is a random process, \(\tilde{n}_{bb}(t) \), that Figure 1.55’s demodulator generates. The complex random process’ autocorrelation, \(r_{bb}(\tau) \) is thus

\[
r_{bb}(\tau) = N_0 \cdot \delta(\tau),
\] (1.370)

and the corresponding power spectral density is thus

\[
S_{bb}(f) = N_0.
\] (1.371)

From Appendix D, the baseband autocorrelation is

\[
r_{bb}(\tau) = 2r_I(\tau) = 2r_Q(\tau) = N_0 \cdot \delta(\tau),
\] (1.372)

so that the inphase and quadrature noises each have power spectral density \(\frac{N_0}{2} \) and are each AWGN signals. Further, from Appendix D and (1.372),

\[
r_{IQ}(\tau) = 0,
\] (1.373)

that is, the inphase and quadrature noises are uncorrelated for all time lags \(\tau \) with baseband-equivalent WGN.

The complex baseband noise is two dimensional (two real dimensions), and the noise variance per dimension is thus \(\frac{N_0}{2} \), which is the reason for the Figure 1.55’s scaling. This scaling makes the noise variance per dimension the same as earlier in this chapter.

1.3.5.2.2 Signal Scaling

A brief review of Section 1.2’s basis-function modulator assists understanding of scaling’s effect: The two normalized QAM passband functions for one-shot AWGN transmission are again

\[
\varphi_1(t) = \sqrt{2} \cdot \varphi(t) \cdot \cos(\omega_c t)
\] (1.374)

\[
\varphi_2(t) = -\sqrt{2} \cdot \varphi(t) \cdot \sin(\omega_c t)
\] (1.375)
where for practical reasons, ω_c is high enough. The modulated signal

\[
x(t) = x_1 \cdot \varphi_1(t) + x_2 \cdot \varphi_2(t) = \sqrt{2} \{ x_1 \cdot \varphi(t) \cdot \cos(\omega_c t) \} - \sqrt{2} \{ x_2 \cdot \varphi(t) \cdot \sin(\omega_c t) \},
\]

has baseband equivalent signal

\[
x_{bb}(t) = \sqrt{2} \cdot (x_1 + jx_2) \cdot \varphi(t).
\]

Figure 1.55c’s scaling removes the extra factor of $\sqrt{2}$ that arose through the modulating basis-function’s normalization. Figure 1.55c explicitly shows this removal so that the system appears as a complex baseband system with complex input

\[
\ddot{x}_{bb}(t) = (x_1 + jx_2) \cdot \varphi(t).
\]

Equation (1.379) becomes

\[
\ddot{x}_{bb}(t) = \ddot{x}_{bb} \cdot \varphi(t)
\]

where

\[
\ddot{x}_{bb} \triangleq (x_1 + jx_2).
\]

Equations (1.380) and (1.381) constitute a single-dimension complex baseband representation of the QAM modulator with (now normalized) basis function $\varphi(t)$ that is entirely consistent in all regards with the two-real-dimensional representation. The complex signal constellation’s average energy is

\[
\mathcal{E}_{bb} = \mathcal{E}_{x} = 2\ddot{\mathcal{E}}_{x} ,
\]

which maintains the convention that a complex signal is equivalent to a two-dimensional real signal in defining $\ddot{\mathcal{E}}_{x}$.

The cups are necessary for introductory baseband analysis, but the literature generally drops them without comment. So complex channel designs equivalent to Figure 1.56 need not include them, and the signal/noise scaling remains consistent because of Figure 1.55 1/$\sqrt{2}$ factor.

Equation (1.380) and (1.381) constitute a single-dimension complex baseband representation of the QAM modulator with (now normalized) basis function $\varphi(t)$ that is entirely consistent in all regards with the two-real-dimensional representation. The complex signal constellation’s average energy is

\[
\mathcal{E}_{bb} = \mathcal{E}_{x} = 2\ddot{\mathcal{E}}_{x} ,
\]

which maintains the convention that a complex signal is equivalent to a two-dimensional real signal in defining $\ddot{\mathcal{E}}_{x}$.

The cups are necessary for introductory baseband analysis, but the literature generally drops them without comment. So complex channel designs equivalent to Figure 1.56 need not include them, and the signal/noise scaling remains consistent because of Figure 1.55 1/$\sqrt{2}$ factor.

Furthermore, Figure 1.56 often represents one-dimensional real systems where there are no passband modulation effects. In this case, the quadrature (imaginary) dimension is tacitly zeroed, while the real dimension carries the signal and has noise power spectral density N_0, entirely consistent with this chapter’s earlier developments.

37 One verifies that these functions are indeed normalized – if $\varphi(t)$ is normalized – by investigating their power spectra under modulation.

38 This whole development may seem tedious for what appears a trivial final result. The author’s experience in teaching these basics over decades though finds that they initially confuse many students new to the area. The development here almost universally eliminates that confusion.
1.3.5.3 Conversion to a baseband equivalent channel

This subsection applies baseband analysis to a QAM system with baseband-equivalent channel and noise. The system then looks like a PAM system except that inputs, outputs and internal quantities are all complex with the real dimension corresponding to the “cosine” modulated component and the imaginary dimension corresponding to the “sine” modulated component. After moving to a complex baseband equivalent, the effect of the carrier is absent in all subsequent analysis.

1.3.5.3.1 Carrier demodulation for baseband-channel generation Figure 1.57’s baseband-equivalent output-signal’s generation has two equivalent forms: Figure 1.57(a) repeats Figure 1.51’s “phase-splitter” analytic-equivalent signal generation to obtain $y_A(t)$. The noise power-spectral density and baseband input modulator each absorb the scale factor for convenient analysis, as in the last subsection and Figure 1.52. The carrier demodulator multiplies the analytic signal $y_A(t)$ by $e^{-j\omega_c t}$ to generate $y_{ba}(t)$. Figure 1.57(b) illustrates a more obvious form of generating $y_{ba}(t)$ that is sometimes used in practice. Figure 1.57(b)’s structure generates the inphase and quadrature components, $y_I(t)$ and $y_Q(t)$ by multiplying $y(t)$ by $2\cos(\omega_c(t))$ and $2\sin(\omega_c(t))$ in parallel. Then,

$$2 \cdot \cos(\omega_c(t))y(t) = y_I(t) \cdot 2 \cdot \cos(\omega_c(t))^2 - y_Q(t) \cdot 2 \cdot \sin(\omega_c(t)) \cos(\omega_c(t))$$

and

$$2 \cdot \sin(\omega_c(t))y(t) = y_I(t) \cdot 2 \cdot \cos(\omega_c(t)) \sin(\omega_c(t)) - y_Q(t) \cdot 2 \cdot \sin(\omega_c(t))^2$$

Lowpass filtering of $2 \cdot [\cos(\omega_c(t))] \cdot y(t)$ and $2 \cdot [\sin(\omega_c(t))] \cdot y(t)$ removes the signal artifacts centered at $2\omega_c$. Figure 1.57 (b)’s two identical lowpass filters are usually easier to implement than Figure 1.57 (a)’s Hilbert filter. More sophisticated designs, especially those involving equalization (see Chapter 3), may prefer Figure 1.57 (a)’s implementation because it has advantages in carrier-phase locking (see Chapter 6).

Figure 1.57: Complex demodulator.
EXAMPLE 1.3.11 (demodulation of a specific signal) As in Section 1.3.5.1’s Example 1.3.8, a passband AWGN-channel output QAM signal is
\[z(t) = \text{sinc}(10^6t) \cdot \cos(2\pi 10^7t) + 3 \cdot \text{sinc}(10^6t) \cdot \sin(2\pi 10^7t) + n(t) \] (1.383)

The carrier frequency is 10 MHz and the symbol period is 1 μs. \(z(t) \) is Figure 1.57(a)’s channel output signal that enters the complex demodulator. The scaled by \(\frac{1}{\sqrt{2}} \) signal is
\[y(t) = \frac{z(t)}{\sqrt{2}} = \frac{1}{\sqrt{2}} \cdot \text{sinc}(10^6t) \cdot \cos(2\pi 10^7t) + \frac{3}{\sqrt{2}} \cdot \text{sinc}(10^6t) \cdot \sin(2\pi 10^7t) + \frac{n(t)}{\sqrt{2}} \] (1.384)

which views the \(1/\sqrt{2} \) scaling as performed in the channel. This scaled signal’s Hilbert Transform in Figure 1.57(a)’s lower parallel path is
\[\hat{y}(t) = \frac{1}{\sqrt{2}} \cdot \text{sinc}(10^6t) \cdot \sin(2\pi 10^7t) - \frac{3}{\sqrt{2}} \cdot \text{sinc}(10^6t) \cdot \cos(2\pi 10^7t) + \hat{n}(t) \] (1.385)

Multiplying the Hilbert Transform by \(j \) and adding to the upper unchanged component \((y(t)) \) creates the analytic signal
\[y_A(t) = y(t) + j\hat{y}(t) \] (1.386)

which after multiplication by the carrier-demodulating term \(e^{-j\omega_c t} \) provides a baseband equivalent signal \(y_{bb}(t) = e^{-j\omega_c t} \cdot y_A(t) \) or
\[y_{bb}(t) = \frac{1 - 3j}{1000 \cdot \sqrt{2}} \cdot 1000 \cdot \text{sinc}(10^6t) + n_{bb}(t) \] (1.387)

This baseband has real signal component of \(.001/\sqrt{2} \) and an imaginary component of \(-.003/\sqrt{2} \). Each dimension’s noise component is \(\frac{N_0}{2} \). These are the same components that were associated with this signal earlier in this chapter as
\[x(t) = \text{sinc}(10^6t) \cdot \cos(2\pi 10^7t) + 3 \cdot \text{sinc}(10^6t) \cdot \sin(2\pi 10^7t) + n(t) = x_1 \cdot \varphi_1(t) + x_2 \cdot \varphi_2(t) \] (1.388)

where the normalized basis functions are
\[\varphi_1(t) = \sqrt{2} \cdot 1000 \cdot \text{sinc}(10^6t) \cdot \cos(\omega_c t) \] (1.389)
\[\varphi_2(t) = -\sqrt{2} \cdot 1000 \cdot \text{sinc}(10^6t) \cdot \sin(\omega_c t) \] (1.390)

If the baseband signal \(y_{bb}(t) \) is now passed through the matched filter 1000 \cdot \text{sinc}(10^6t) and sampled at time 0, the two components \(.001/\sqrt{2} \) and \(-.003/\sqrt{2} \) are the real and imaginary output dimensions. Each dimension’s relevant independent noise component is \(\frac{\sqrt{2}}{2} \), or equivalently the original white noise’s power-spectral density, which is equal to its variance per dimension with normalized basis functions.

The subsequent subsection now adds channel filtering with impulse response \(h(t) \) to the system and investigates the filtered-AWGN channel’s modeling as a complex baseband equivalent for QAM transmission.

1.3.5.3.2 Generating the baseband equivalent: some examples Transmission design considers a variety of transmission-channel information. This information is often not in a convenient initial form. The designer may spend considerable time and effort to understand and model the channel. Such effort often includes the baseband-equivalent channel model’s construction. A first example explores a two-ray mathematical channel model. The second example starts converts a transmission-line model into an acceptable baseband response.
EXAMPLE 1.3.12 (Two-ray wireless channel) Wireless transmission sometimes use a “two-ray” model. This model has two paths between a transmit antenna and a receive antenna, one direct “line-of-sight” and the other delayed and attenuated through reflection. The reflected path usually represents a reflection from a building, mountain, or other physical entity. The second path has a delay (say by \(\tau = 1.1 \mu \text{s} \)) and signal attenuation (say 90% of the first path’s amplitude) with respect to the first path. At the carrier frequency, the reflected signal also has 180 degrees of phase shift. The channel impulse response is then

\[
h(t) = g \cdot [\delta(t) - 0.9 \cdot \delta(t - \tau)]
\]

where \(g \) is an attenuation factor that models the path loss and antenna losses. The Fourier transform is

\[
H(f) = g \cdot [1 - 0.9 \cdot e^{-j2\pi f \tau}]
\]

The noise is white and combines several components, natural and man-made with one-sided PSD -150 dBm/Hz. Wireless systems often use carrier frequencies between 800 and 900 MHz, so a design chooses a carrier for QAM modulation at 852 MHz and further choose 4QAM transmission with a symbol rate of \(1/T = 1.0 \text{ MHz} \). Thus, frequencies between 852-.5 = 851.5 MHz and 852+.5=852.5 MHz are of interest, corresponding to a baseband-equivalent channel with frequencies between -500 kHz and + 500 kHz.

The complex-channel model for this transmission is then

\[
\frac{1}{2} h(t) = g \cdot [\delta(t) - 0.9 \cdot \delta(t - \tau)] \cdot e^{-j2\pi f_c t}
\]

with Fourier transform

\[
\frac{1}{2} H_{bb}(f) = H(f + f_c) = g \cdot [1 - 0.9 \cdot e^{-j2\pi (f + f_c) \tau}]
\]

Figure 1.58 plots the passband channel magnitude from 850 MHz to 860 MHz, along with the complex baseband-equivalent channel’s magnitude (with scaling factor of \(1/\sqrt{2} \) included) from -500 kHz to 500 kHz. The channel clearly has “notching” effects because of the possibility of the second path adding out-of-phase (with phase \(\pi \)) at some frequencies. Wider
QAM-transmission bandwidth more likely overlaps one (or more) of the transmission band “notches.” Thus, this “multipath” distortion will lead to a non-flat or filtered-AWGN channel response (which means the techniques of Chapter 3 and later chapters are necessary for reliable recovery of messages). The baseband-equivalent is clearly not symmetric about frequency zero, meaning its baseband-equivalent impulse response is complex, as the formula above in (1.393) also implies. The baseband-equivalent response’s real and imaginary parts appear in Figure 1.59. The baseband-equivalent noise for the model introduced in this Section is still white and has $N_0=-150$ dBm/Hz, or equivalently $N_0 = 10^{-18}$. For typical values of g in well designed transmission systems, this will be a few orders of magnitude below the signal levels. It’s very simple in this case: Slide the Fourier transform in the band of interest down to DC, then set the complex noise level equal to the single-sided PSD.

![Figure 1.59: Real and imaginary parts of (scaled) baseband equivalent channel response for two-ray example.](image)

The 2-ray model that easily led to a compact mathematical description is often inaccurate. More likely, the designer must measure the channel frequency attenuation in dB at several transmission-band frequencies, along with the measured channel signal delay at these same frequencies. The designer may also need to measure the noise power spectral density at these same frequencies (if not AWGN). The conversion to a complex baseband channel may be tedious, but follows the same steps as in the next example.
EXAMPLE 1.3.13 (Telephone Line Channel) Telephone lines today are sometimes used for data transmission within the home, and this example looks at a 10 Mbps data rate. The carrier frequency is 7.5 MHz and the symbol rate is 5 MHz for a 4 QAM signal. Telephone line attenuation versus frequency is often measured in terms of “insertion loss” in dB, a ratio of the voltage at the line output to the voltage at the same load point when the phone line is removed. For a well-matched system, it can be determined that this insertion loss is 6 dB above the transfer function from source to load, which is the desired function for digital transmission analysis. Figure 1.60 plots the insertion loss in dB for a 26-gauge phone line of length 300 meters. The baseband equivalent channel response is in the frequency range from 5 MHz to 10 MHz, which the designer “slides” so that 7.5 MHz now appears as DC, as also illustrated in Figure 1.60. Figure 1.60 increases the baseband characteristic by 6 dB to get the transfer function. The slid baseband complex channel automatically includes the scale factor of 1/2. The designer would presumably obtain or measure the insertion loss at a sufficient number of frequencies between 5 and 10 MHz, store those values in a file, and then analyze them with this text’s design methods. To use common digital signal processing operations like the inverse Discrete Fourier Transform, the measured values will need to be equally spaced in frequency between 5 MHz and 10 MHz. Perhaps 501 measurements with spacing 10 kHz have been taken. These 501 values form the channel transfer-function amplitudes (after conversion of dB back into linear-scale values) at the frequencies 5 MHz, 5.01 MHz, ... 10 MHz, or for baseband (increased by 6 dB to compute transfer function from insertion loss) equivalent from -2.5 MHz to 2.5 MHz.
Figure 1.61 plots channel delay measurements at all these same frequencies in microseconds. The index runs as \(n = 0, \ldots, 500 \) across the frequency band of interest. Since delay is the negative phase derivative, phase angle calculation accumulates delay (with minus sign) from -2.5 MHz to each and every frequency index as

\[
\angle H_{bb}(-2.5 \text{MHz} + n \cdot .01 \text{MHz}) = \theta_0 - \sum_{i=0}^{n} \text{Delay}[H_{bb}(i)] . \tag{1.395}
\]

\(\theta_0 \) is a constant arbitrary phase reference that ultimately has no effect on transceiver performance, and thus usually taken to be 0. The baseband equivalent channel (scaled by 1/2) is the inverse DFT (IFFT command in Matlab) of vector of values \(H_{bb}(n) \ n = 0, \ldots, 500 \). Because of the arbitrary phase, the time-domain response is usually not centered and has nonzero components at the response’s beginning and end. Simple circular shift (already included in Figure 1.61) will provide a “centered” \(h_{bb}(t) \) sampled at the symbol rate (which can be made causal by simple reindexing of the time axis). The transmit psd of the 4QAM signal is about -57 dBm/Hz, so that the power is then about 10 dBm (or 10 milliwatts). To interpolate the baseband response to finer time-resolution than the symbol rate, a band wider than 5-10 MHz must be measured, translated to DC, and then inverse transformed.
An interesting effect in telephone-line transmission is that neighbors’ data signals can be “heard” through electromagnetic coupling between phone lines in phone cables “upstream.” This “crosstalk” then can return into other homes. This crosstalk can thus contribute to noise. Thus, the noise is not “white,” and a simple model for the one-sided power spectral density of this noise has power spectral density:

\[-187 + 15 \log_{10}(f) \text{ dBm/Hz} \].

This power-spectral density can be computed with f values from 5 MHz to 10 MHz, and then translated to baseband to obtain the baseband-equivalent power spectral density, as in Figure 1.63.

To find Section 1.3.7’s so-called “white-noise equivalent” for this complex baseband-equivalent channel, the inverse noise psd can be IFFT’d to the time-domain and factored using the roots command in matlab. Terms with roots of magnitude greater than 1 correspond to the minimum-phase factorization, said inverse can then be convolved with the channel $\cdot h_{bb}(kT)$ to find Subsection 1.3.7’s white-noise equivalent channel samples at the symbol rate.

This last example seems like much tedious work, but it is perhaps simple compared to what communication engineers do. The example emphasizes how important it is for communications designers to know and well model their channel so that the theories and guidance learned from this text can be applied.

1.3.5.3.3 Complex generalization of inner products and analysis

Optimum demodulation theory for complex signals with baseband-equivalent WGN, or more generally any complex channel (see later sections), is essentially the same as that for real signals earlier in this chapter. All previously presented detector analysis and structure holds with the following complex-arithmetic generalizations:

1. The inner product becomes

\[<x, y> = x^* y = \int_{-\infty}^{\infty} x^*(t) \cdot y(t) dt \],

\[(x^* \text{ means conjugate transpose of } x)\).

2. The matched filter is conjugated, that is $\varphi(T - t) \rightarrow \varphi^*(T - t)$.

3. Energies of complex scalars are $E_x = E \{|x(t)|^2\}$, or the expected squared magnitude of the complex scalar, and $\bar{E}_x = E_x/2$.

Figure 1.63: Baseband-equivalent noise power spectrum for home-phone network example.
For the MIMO case, a superscript of * means conjugate transpose of the matrix or vector. Further, Equation (1.397)’s integral becomes a sum of \(L_x \) integrals, the matched filter becomes \(L_x \) parallel matched filters. Energy per dimension will be divided by the total number of real dimensions, as always.

1.3.6 Passband Analysis for QAM alternatives

Passband analysis directly applies to QAM modulation in a way that simply requires computing a channel’s baseband equivalent for convolution with the complex input \((x_1 + jx_2) \cdot \varphi(t)\). Some transmission systems instead may use one of Section 1.3.6’s three other implementations, VSB, CAP, or OQAM. This section addresses the specifics of how the passband analysis concepts discussed so far still apply to these other passband modulation types. In all cases, a complex-equivalent channel can be found easily from the given channel transfer function.

1.3.6.1 Passband VSB Analysis

This subsection starts with SSB (single-side-band) and then generalizes to VSB. With SSB, the transmitted signal has \(x_I(t)\) and \(x_Q(t)\) that are each other’s Hilbert transforms and thus

\[
x(t) = x_I(t) \cdot \cos(\omega_c t) - \hat{x}_I(t) \cdot \sin(\omega_c t)
\]

Such a signal only exhibits nonzero energy content for frequencies exceeding the carrier frequency (and for frequencies below the negative carrier frequency). The SSB baseband-equivalent signal is also therefore analytic, for with a new notation

\[
x_{Ab}(t) = x_{bb}(t) = x_I(t) + j\hat{x}_I(t)
\]

The subscript of \(Ab\) represents a new signal that is both analytic and baseband for SSB analysis. The channel output’s baseband equivalent is consistently

\[
y_{Ab}(t) = x_{Ab}(t) * \left(\frac{h_{Ab}(t)}{2} \right)
\]

\[
Y_{Ab}(\omega) = X_{Ab}(\omega) \cdot H(\omega + \omega_c) \quad \omega > 0
\]

The previous passband-channel analysis applies for any carrier frequency and not just one centered within the passband. Thus, baseband-equivalent analysis directly applies to SSB also and the “\(Ab\)” notation has just made explicit the carrier-frequency position on the band’s lower edge. However, the input construction is such that \(x_Q(t)\) is no longer independent of \(x_I(t)\). Generally speaking, with this SSB constraint, twice as many dimensions per second are transmitted within \(x_I(t)\) for SSB than would be the case for QAM with the same bandwidth. However, QAM can independently use the quadrature dimension whereas for SSB this quadrature dimension is completely determined from the inphase dimension (or vice versa). The analysis for lower sideband (instead of the assumed upper sideband) follows by simply negating the quadrature component and choosing the carrier frequency at the passband’s upper edge, and then the baseband equivalent is nonzero only for negative frequencies, but again follows Sections 1.3.5.1 and 1.3.5.3’s general analysis.

VSB transmission generalizes SSB transmission. VSB systems create \(x_I(t)\) and \(x_Q(t)\) so that they are almost Hilbert Transforms of one another. A VSB system may be easier to implement in practice and always uses an equivalent SSB signal. With this text’s nomenclature, a VSB signal’s baseband equivalent, \(x_{Vb}(t)\), has “vestigial” symmetry about \(f = 0\): that is \(X_{Vb}(f) + X_{Vb}(-f) = X_{Ab}(f)\) \(\forall f > 0\) where \(X_{Ab}(f)\) is for the (analytic) SSB signal in (1.399) upon which the VSB signal is based. The VSB signal uses a carrier frequency that is not at the passband edge. This carrier frequency is the point around which the passband signal exhibits vestigial symmetry. This frequency determines the channel’s baseband equivalent representation,

\[
Y_{Vb}(\omega) = X_{Vb}(\omega) \cdot H(\omega + \omega_c) \quad \omega > -\omega_c
\]

US Terrestrial digital television broadcast uses VSB transmission with carrier frequencies at the nominal “TV channel” positions of 52 MHz + \(i\cdot(6 \text{ MHz})\), effectively \(b = 2\) (constellation is coded so it is called...
64 VSB, where extra levels are redundant for coding, see Chapter 2) and a symbol rate of roughly 5 MHz, for a data rate of 20 Mbps. The signals thus have non-zero energy from about 1.5 MHz below the carrier and to 3.5 MHz above the carrier using vestigial transmit symmetry with respect to that carrier.

1.3.6.2 Passband CAP Analysis

Analysis of CAP (carrierless amplitude phase) modulation essentially replaces baseband equivalents with analytic signal and channel equivalents. A CAP signal is generated according the J.J. Werner’s [4] observation that follows:

\[
x_A(t) = \sum_k x_k \cdot \varphi(t - kT) \cdot e^{j\omega_c t}
\]

(1.403)

\[
x_A(t) = \sum_k x_k \cdot \varphi(t - kT) \cdot e^{j\omega_c t} \cdot e^{-j\omega_c kT} \cdot e^{+j\omega_c kT}
\]

(1.404)

\[
x_A(t) = \sum_k (x_k \cdot e^{j\omega_c kT}) \cdot \varphi(t - kT) \cdot e^{j\omega_c (t - kT)}
\]

(1.405)

\[
x_A(t) = \sum \tilde{x}_k \cdot \varphi_A(t - kT)
\]

(1.406)

where the new quantities are defined as

\[
\varphi_A(t) = \varphi(t) \cdot e^{j\omega_c t} \quad \text{and}
\]

\[
\tilde{x}_k = x_k \cdot e^{j\omega_c kT}
\]

(1.407)

(1.408)

The latter is a rotated version of the input). Thus, a CAP system simply rotates encoder outputs to create a symbol-time-invariant analytic modulation. The receiver also knows the rotation sequence and therefore need only detect \(\tilde{x}_k\), and then \(x_k\) can easily be determined by reversing the known rotation,

\[
x_k = \tilde{x}_k \cdot e^{-j\omega_c kT}.
\]

In practice, designs ignore the rotations, and the sequence \(\tilde{x}_k\) itself directly carries the information, noting that the rotations at each end simply undo each other and have no bearing on performance nor functionality. They are necessary only for equivalence to a QAM signal.

The channel output then follows

\[
y_A(t) = x_A(t) \ast \left(\frac{h_A(t)}{2}\right)
\]

(1.409)

\[
Y_A(\omega) = X_A(\omega) \cdot H(\omega) \quad \omega > 0.
\]

(1.410)

CAP’s focus only upon analytic signals, the complex channel is the analytic-equivalent channel with zero Fourier transform for negative frequencies (and for which the notation \(H_{CAP}\) is specific to analysis of CAP transmission over a channel with response generally denoted by \(h(t)\).)

\[
H_{CAP}(\omega) = H(\omega) \cdot \frac{1}{2} (1 + \text{sgn}(\omega))
\]

(1.411)

On a channel with narrow transmission band relative to the carrier frequency, intermediate-frequency (IF) demodulation may move (but not zero) the effective transmission band’s center frequency closer to DC. Then CAP applies directly to the IF-demodulated signal. The IF demodulation treats the transmission signals as if they were analog signals and is separate from data transmission.

After conversion to complex equivalent channels, both QAM and CAP receiver processing can be generally described by the processing of a complex channel output, and such a complex model is this section’s objective.

\[39\]This \(\tilde{x}_k\) is notation used specific to the CAP situation here, and is not intended to be equivalent to any other temporary uses of a tilde on a quantity elsewhere in this textbook.
1.3.6.3 OQAM or “Staggered QAM”

The OQAM basis functions appear earlier in this subsection (see paragraph 1.3.4.2.3). This entire subsection could replace \(\cos(\omega_c t) \) with \(\text{sinc}(t/T) \cdot \cos(\omega_c t) \) and most importantly \(\sin(\omega_c t) \) with \(\text{sinc}((t - t/T)/T) \cdot \sin(\omega_c t) \) everywhere – and all results would still hold. However, there is an easier way to reuse previous results: Instead, OQAM’s essential difference from QAM is OQAM quadrature component’s delay by one-half symbol period with respect to the inphase component. OQAM analysis proceeds with an equivalent channel input that doubles the symbol rate for a corresponding time-varying encoder that alternates between a nonzero inphase component (with zero quadrature component) and a nonzero quadrature component (with zero inphase component). OQAM then inputs this new time-varying double-speed symbol sequence to a conventional (double symbol rate) QAM modulator and thereby generates the OQAM sequence. All previous complex-analysis results then apply directly to this new equivalent system running at twice the symbol rate. The energy per dimension \(\bar{\xi} \) will reduce by a factor of 2 if power is maintained constant, which is consistent also with the alternate zeroing of quadrature and inphase components.

The channel output for OQAM input to an impulse response \(h(t) = \Re\{h_{bb}(t) \cdot e^{j\omega_c t}\} \) convolves the baseband equivalent of the continuous-time \(x(t) \) formed from the double-symbol-rate “interleaved” symbol sequence \([h_{bb}(t)]/2\). Again a complex channel fits the analysis – the objective for this section.

The inphase and quadrature dimensions are not strictly independent since they have alternating zero values. This dependence or correlation effectively halves the bandwidth so that an OQAM system running with symbol rate \(1/T \) and the basis functions in Section 1.6, even though analyzed as a QAM system running with independent symbols at rate \(2/T \), occupies the same bandwidth as QAM. In fact as the function \(\varphi_2(t) \) is generalized (See Chapter 3) so that \(\varphi(t) \neq \sqrt{1/T} \cdot \text{sinc}(t/T) \), then OQAM typically requires less bandwidth in terms of the inevitable “non-brick-wall” energy roll-off associated with practical filter design.

1.3.6.4 The difference between complex and baseband equivalent channels

In digital-transmission literature and field of application, most practicing transmission specialists always use a complex channel to describe any channel, baseband or passband. When all complex quantities are real, the baseband case is a special case of the more general complex channel. Typically, a practicing engineer finds the complex equivalent channel from the real passband channel’s provided magnitude/phase characteristics (or their equivalents). This process essentially slides the passband down to DC and then inverse transforms the result to produce a complex-equivalent channel. While precise bookkeeping of factors-of-2 helps initial understanding, they eventual cancel under this section’s rules. The energy-normalizing factor of \(1/\sqrt{2} \) absorbs into the channel input and noise processes to retain \(E_0/\sqrt{2} \) per dimension or as its (doubled-sided) passband power-spectral density. Since theoretical performance only depends on the ratio of signal power to noise, as long as this ratio is correct, scale factors on both signals are irrelevant from an analysis perspective. These factors of 2 may be crucial in determining the absolute dynamic range of an actual receiver design’s channel-interfacing circuits, but otherwise do not affect analysis as long as the SNR is determined correctly, as in this section.

Thus, the literature on transmission almost always uses complex signals to represent channels and no factors of 2 appear, nor need to. However, designer carefully and correctly accounts for them when providing the SNR. Thus, when this text provides a complex channel (and not told specifically that it is a baseband equivalent channel derived as shown in this Chapter), the correct assumption is that convolution should occur without any additional factors of two. This subsection attempted to address these factors directly to assist field engineers who may well encounter them in calibrating their designs. It has been this author’s personal experience that many professional and decorated engineers often trip on a factor of 2 interpretation\(^{40}\). This section provided all the details in the hope of having a solid reference.

\(^{40}\) Perhaps one of the most famous factor-of-2 errors was made by America’s then finest industrial telecommunications research center and largest best-quality television supplier when they concluded that VSB was 3 dB better than QAM (it’s not) after enormous money had been invested into the eventually red-faced-acknowledged mistake. Their VSB system was selected anyway until it was later replaced by Chapter 4’s Coded-OFDM methods. Some famous text books still have the factor of 2 mistake as well.

110
upon which any designer may return to check results when things somehow seem off (by 3 dB!).

1.3.6.4.1 The complex filter Another important distinction to mention is the complex filter. Once a receiver or transmitter has established a complex (two-dimensional) signal and is using complex filters to process that signal, there is no factor of 2 involved. Any factor of two would only be necessary if both of the convolved quantities did correspond to passband signals, and a strict equivalent need be retained. However if all signals are complex, then there is no need for passband equivalences and convolution proceeds correctly for any internal complex filters without any factors of two involved. Chapter 3 uses such filters within a receiver and does return to passband discussion, so convolution proceeds directly without factors of 2 and correctly represents the receiver’s internal filtering of complex signals.

1.3.7 Additive Self-Correlated Noise

In practice, additive noise is often Gaussian, but its power spectral density may not be flat. Engineers often call such noise “self-correlated” or “colored”. Colored noise remains independent of the message signals but correlates with itself from time instant to time instant. Colored noise’s origins are many: Receiver filtering effects, noise generated by other communications systems (“crosstalk”), and electromagnetic interference all may introduce self-correlated noise. A narrow-band radio-signal transmission that somehow becomes noise for a different (unintended) channel is another common example of self-correlated noise and called “RF” noise (RF is an acronym for “radio frequency’’). As many noises add, the central limit theorem applies to render the colored noise distribution nearly Gaussian (whatever its constituent component distributions)\(^{41}\).

Self-correlated Gaussian noise can significantly alter the detector’s performance with respect to a detector designed for white Gaussian noise. This section investigates the optimum detector for colored noise and also considers the performance loss when using a (consequently suboptimal) detector designed for AWGN.

This study first investigates Subsection 1.3.7.1’s filtered “one-shot” AWGN channel. Subsection 1.3.7.2 then finds the optimum detector for additive self-correlated Gaussian noise, by adding a whitening filter that transforms the self-correlated noise channel into a filtered AWGN channel. Subsection 1.3.7.2.2 studies the vector channel, for which (for some unspecified reason) the noise has not been whitened and describes the optimum detector given this vector channel. Finally, Subsection 1.3.7.3 studies the degradation that occurs when the noise correlation properties are unknown in receiver design, and the receiver uses instead an optimum AWGN (ML) detector.

1.3.7.1 The Filtered (One-Shot) AWGN Channel

Figure 1.64 illustrates the filtered AWGN channel. The modulated signal \(x(t)\) undergoes filtering by \(h(t)\) before the addition of the white Gaussian noise. When \(h(t) \neq \delta(t)\), the filtered signal set \(\{\bar{x}_i(t)\}\) may differ from the transmitted signal set \(\{x_i(t)\}\). This channel filtering usually changes the error probability as well as the ML-detector structure. This subsection (and chapter) still consider only one channel use with \(M\) possible messages. Transmission over a filtered channel can incur a significant penalty from intersymbol interference between successively transmitted data symbols. In the “one-shot” case, however, analysis need not consider this intersymbol interference. Chapters 3, 4, and 5 consider intersymbol interference.

For any channel input signal \(x_i(t)\), the corresponding filtered output equals \(\bar{x}_i(t) = h(t) \ast x_i(t)\). Decomposing \(x_i(t)\) by an orthogonal basis set, \(\bar{x}_i(t)\) becomes

\[
\bar{x}_i(t) = h(t) \ast x_i(t) = h(t) \ast \sum_{n=1}^{N} x_{in} \cdot \varphi_n(t) \tag{1.413}
\]

\(^{41}\)In practice, no noise will ever quite be exactly Gaussian, but designs based on this assumption have proven to be very robust throughout almost all transmission experience, to date anyway.
\[= \sum_{n=1}^{N} x_{in} \cdot \{ h(t) * \varphi_n(t) \} \quad (1.414) \]

\[= \sum_{n=1}^{N} x_{in} \cdot \phi_n(t) \quad , \quad (1.415) \]

where

\[\phi_n(t) \triangleright h(t) * \varphi_n(t) \quad . \quad (1.416) \]

Figure 1.64: Filtered AWGN channel.

Observations include:

- The set of \(N \) functions \(\{ \phi_n(t) \}_{n=1,...,N} \) is not necessarily orthonormal.

- For the channel to convey any and all constellations of \(M \) messages for the signal set \(\{ x_i(t) \} \), the new basis set \(\{ \phi_n(t) \} \) must be linearly independent.

The first observation can be easily proven by finding a counterexample. The second observation emphasizes that if filtering zeros some dimensions, signals in the original signal set that differ only along the lost dimension(s) would appear identical at the channel output. If \(\phi_n(t) \) is such a dimension, then the two signals \(\tilde{x}_k(t) \) and \(\tilde{x}_j(t) \) that differ only on that dimension are not distinguishable:

\[\tilde{x}_k(t) - \tilde{x}_j(t) = \sum_{n=1}^{N} (x_{kn} - x_{jn}) \cdot \phi_n(t) = 0 \quad , \quad (1.417) \]

However, if the set \(\{ \phi_n(t) \} \) is linearly independent then the sum in \((1.417) \) must be nonzero: a contradiction to \((1.417) \). Conversely, if this function set is linearly dependent, then \((1.417) \) can be satisfied, resulting in the possibility of ambiguous transmitted signals. Failure to meet the linear independence condition could mandate a redesign of the modulated signal set or a rate reduction (decrease of \(M \)). Chapters 4 and 5 investigate such dimensionality loss and provide redesigns of \(\{ x_i(t) \}_{i=0:M-1} \) to avoid this “singular channel.” This chapter assumes such dimensionality loss does not occur.

If the set \(\{ \phi_n(t) \} \) is linearly independent, then the Gram-Schmidt procedure in Appendix A generates an orthonormal set of \(N \) basis functions \(\{ \psi_n(t) \}_{n=1,...,N} \) from \(\{ \phi_n(t) \}_{n=1,...,N} \). A new signal constellation \(\{ \tilde{x}_1 \}_{i=0:M-1} \) follows from the filtered signal set \(\{ \tilde{x}_i(t) \} \) using the basis set \(\{ \psi_n(t) \} \).

\[\tilde{x}_{in} = \int_{-\infty}^{\infty} \tilde{x}_i(t) \cdot \psi_n(t) dt = \langle \tilde{x}_i(t) , \psi_n(t) \rangle \quad . \quad (1.418) \]
Using the previous AWGN analysis, a tight upper bound on message error probability remains

$$P_e \leq N_0 Q \left[\frac{d_{\text{min}}}{2\sigma} \right],$$

where d_{min} is the minimum Euclidean distance between any two points in the filtered signal constellation $\{ \tilde{x}_i \}_{i=0:M-1}$. Figure 1.65’s signal detector does require $\{ \psi_n(t) \}_{n=1,...,N}$’s determination, but it is tacit in analysis. (For reference, Figure 1.28 shows the detector for the unfiltered constellation).

![Modified signal detector diagram](#)

Figure 1.65: Modified signal detector (each filter can become L_x filters for MIMO).

Filtered AWGN analysis still measures the transmitted average energy \mathcal{E}_x at the channel input. Thus, \mathcal{E}_x physical’s significance is different from that of $\mathcal{E}_{\tilde{x}}$. Nonetheless, for the original signal set satisfying the energy constraint, the altered constellation allows performance analysis.

1.3.7.2 Optimum Detection with Self-Correlated Noise

![ACGN channel diagram](#)

Figure 1.66: ACGN channel.
Figure 1.66 illustrates the Additive Self-Correlated Gaussian Noise (ACGN) channel. The only change with respect to Figure 1.23 is that the autocorrelation function of the additive noise \(r_n(\tau) \), need not equal \(\frac{N_0}{2} \cdot \delta(\tau) \). Simplification of the ensuing development defines and uses a normalized noise autocorrelation function

\[
\bar{r}_n(\tau) \triangleq \frac{r_n(\tau)}{\frac{N_0}{2}}.
\]

(1.420)

The unnormalized noise’s power spectral density is then

\[
\bar{S}_n(f) = \frac{N_0}{2} \cdot \bar{S}_n(f),
\]

where \(\bar{S}_n(f) \) is the Fourier Transform of \(\bar{r}_n(\tau) \).

1.3.7.2.1 The Whitening filter

ACGN channel design and analysis “whitens” the colored noise with filter \(g(t) \), and then uses the previous section’s filtered-AWGN results where the filter \(h(t) = g(t) \). To ensure that \(g(t) \) loses no information, \(g(t) \) should be invertible. By the reversibility theorem, the receiver then can use an optimal detector for this newly generated filtered AWGN without performance loss. Actually, the condition on invertibility of \(g(t) \) is sufficient but not necessary. For a particular signal set, a necessary condition is that the filter be invertible over that signal set’s (non-zeroed) dimensions. For the filter to be invertible on any possible signal set, \(g(t) \) must necessarily be invertible. This subtle point is often overlooked by most works on this subject.

For \(g(t) \) to whiten the noise,

\[
[S_n(f)]^{-1} = |G(f)|^2.
\]

(1.422)

In general many filters \(G(f) \), may satisfy Equation (1.422) but only some of the filters possess realizable inverses (the particular choice is the so-called minimum-phase choice that has all poles and zeros in the left-half plane, or on the \(s = j\omega \) axis with multiplicity 1 in that “marginally realizable” case - recognizing of course that is white noise so no whitening filter is needed, or the filter is trivially the Dirac delta function \(\delta(t) \)). Appendix A covers this area (for now, see Appendix A of Chapter 3).

To ensure a realizable inverse’s existence, \(S_n(f) \) must satisfy the Paley-Wiener Criterion.

Theorem 1.3.6 (Paley-Wiener Criterion) If

\[
\int_{-\infty}^{\infty} \frac{|\ln S_n(f)|}{1+f^2} df < \infty,
\]

(1.423)

then there exists a \(G(f) \) satisfying (1.422) with a realizable inverse. (Thus the filter \(g(t) \) is a 1-to-1 mapping).

If the noise spectrum violates the Paley-Wiener criterion, then it is possible to design transmission systems with infinite data rate (that is when \(S_n(f) = 0 \) over a given bandwidth, put the signals in that band). A full development of Paley Wiener is deferred until Appendix A of Chapter 3. This subsection’s analysis always assumes Equation (1.423) is satisfied.\(^{42}\) With a 1-to-1 \(g(t) \) that satisfies (1.422), the ACGN channel converts into an equivalent filtered white Gaussian noise channel as Figure 1.64 shows by replacing \(h(t) \) with \(g(t) \). The performance analysis of ACGN is identical to that derived for the filtered AWGN channel in Subsection 1.3.7.1. A further refinement handles the filtered ACGN channel by whitening the noise and then analyzing the filtered AWGN with \(h(t) \) replaced by \(h(t) \ast g(t) \).

Appendix 3A develops “analytic continuation” for \(\tilde{S}_n(s) \) to determine an invertible \(g(t) \):

\[
\tilde{S}_n(s) = \tilde{S}_n\left(f = \frac{s}{2\pi j}\right),
\]

(1.424)

where \(\tilde{S}_n(s) \) can be canonically (and uniquely) factored into causal (and causally invertible) and anti-causal (and anticausally invertible) parts as

\[
\tilde{S}_n(s) = \tilde{S}_n^+(s) \cdot \tilde{S}_n^-(s),
\]

(1.425)

\(^{42}\) Chapters 4 and 5 also expand to the correct form of transmission that should be used when (1.423) is not satisfied.
where
\[S_n^+(s) = S_n^-(s) \].

If \(S_n(s) \) is rational, then \(S_n^+(s) \) is “minimum phase,” i.e. all poles and zeros of \(S_n^+(s) \) are in the left half plane. The filter \(g(t) \) is then
\[g(t) = \mathcal{L}^{-1}\left\{ \frac{1}{S_n^+(s)} \right\}, \]

where \(\mathcal{L}^{-1} \) is the inverse Laplace Transform. The matched filter \(g(-t) \) is given by
\[g(-t) = \mathcal{L}^{-1}\left\{ \frac{1}{S_n^-(s)} \right\}. \]

If \(g(t) \) is anticausal and cannot be realized. Practical receivers instead realize \(g(T - t) \), where \(T \) is sufficiently large to ensure causality.

In general, \(g(t) \) may be difficult to implement by this method; however, the next subsection considers a discrete equivalent of whitening that is more straightforward to implement digitally in practice. When the noise is complex, Equation (1.426) generalizes to
\[S_n^+(s) = [S_n^-(s^*)]^*. \]

MIMO-channel noise whitening typically uses an inverted square-root matrix to remove any spatial correlation between different dimension’s noises, then augments the spatial whitening by any necessary further scalar whitening in time-frequency. Practically, the same noise impinges upon the different antennas or wires and this is spatially removed by the square root with only the “spatially white” noise remaining. More generally, this whitening can be handled in the practical discrete-time cases as shown in Chapter 3, particularly Appendix A there, and also in Chapters 4 and 5.

1.3.7.2.2 The Vector Self-Correlated Gaussian Noise Channel

This subsection considers a discrete ACGN equivalent
\[y = x + n \],

where the noise vector \(n \)’s autocorrelation matrix is
\[E[n \cdot n^*] = R_n = \bar{R}_n \cdot \sigma^2. \]

Both \(R_n \) and \(\bar{R}_n \) are positive-definite matrices. This discrete ACGN channel replaces the continuous ACGN channel. MIMO applies here directly with the self-correlated noise now introducing explicitly correlated between dimensions. All analysis proceeds identically, whether the original channel was MIMO or simply a set of successive time samples from a channel output’s noise. The discrete noise vector can be “whitened”, transforming \(\bar{R}_n \) into an identity matrix. The discrete equivalent to whitening \(y(t) \) by \(g(t) \) is a matrix multiplication. The \(N \times N \) whitening matrix in the discrete-time case corresponds to the whitening filter \(g(t) \) in the continuous case.

Cholesky factorization determines the invertible whitening transformation according (see Appendix A of Chapter 3):
\[\bar{R}_n = \mathcal{R}^{1/2} \cdot \mathcal{R}^{1/2}, \]

where \(\mathcal{R}^{1/2} \) is lower triangular and \(\mathcal{R}^{1/2} \) is upper triangular. These matrices constitute the matrix equivalent of a “square root”, and both matrices are invertible. Noting the definitions,
\[\mathcal{R}^{-1/2} \triangleq \left[\mathcal{R}^{1/2} \right]^{-1}, \]

and
\[\mathcal{R}^{-1/2} \triangleq \left[\mathcal{R}^{1/2} \right]^{-1}, \]

then to whiten \(n \), the receiver passes \(y \) through the matrix multiply \(\mathcal{R}^{-1/2} \),
\[\tilde{y} = \mathcal{R}^{-1/2} \cdot y = \mathcal{R}^{-1/2} \cdot x + \bar{R}^{-1/2} \cdot n = \tilde{x} + \tilde{n}. \]
The autocorrelation matrix for \tilde{n} is
\begin{align*}
E[\tilde{n} \cdot \tilde{n}^*] &= \overline{R}^{-1/2}E[nn^*] \overline{R}^{1/2} = \overline{R}^{-1/2} \left(\overline{R}^{1/2} \overline{R}^{1/2} \cdot \sigma^2 \right) \overline{R}^{1/2} = \sigma^2 \cdot \mathbf{I} .
\end{align*}
(1.436)

Thus, \tilde{n}’s covariance matrix is the same as the AWGN vector’s covariance matrix. By the reversibility theorem (Theorem 1.1.4), no information is lost in such a transformation.

EXAMPLE 1.3.14 (QPSK with correlated noise) Figure 1.26’s example now experiences colored noise with correlation matrix
\begin{align*}
R_n &= \sigma^2 \begin{bmatrix}
1 & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & 1
\end{bmatrix}
\end{align*}
(1.437)

Then
\begin{align*}
\overline{R}^{1/2} &= \begin{bmatrix}
1 & 0 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{bmatrix}
\end{align*}
(1.438)

and
\begin{align*}
\overline{R}^{1/2} &= \begin{bmatrix}
1 & \frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}}
\end{bmatrix} .
\end{align*}
(1.439)

From (1.438),
\begin{align*}
\overline{R}^{-1/2} &= \begin{bmatrix}
1 & 0 \\
-1 & \sqrt{2}
\end{bmatrix}
\end{align*}
(1.440)

and
\begin{align*}
\overline{R}^{-1/2} &= \begin{bmatrix}
1 & -1 \\
0 & \sqrt{2}
\end{bmatrix} .
\end{align*}
(1.441)

The signal constellation after the whitening filter becomes
\begin{align*}
\tilde{x}_0 &= \overline{R}^{-1/2} x_0 = \begin{bmatrix}
1 & 0 \\
-1 & \sqrt{2}
\end{bmatrix} \begin{bmatrix}
1 \\
-1
\end{bmatrix} = \begin{bmatrix}
\frac{1}{\sqrt{2} - 1}
\end{bmatrix} ,
\end{align*}
(1.442)

and similarly
\begin{align*}
\tilde{x}_2 &= \begin{bmatrix}
-1 \\
\sqrt{2} + 1
\end{bmatrix} ,
\end{align*}
(1.443)
\[
\begin{align*}
\mathbf{x}_1 &= \begin{bmatrix} 1 \\ \sqrt{2} - 1 \end{bmatrix}, \quad \text{and} \\
\mathbf{x}_3 &= \begin{bmatrix} -1 \\ -\sqrt{2} + 1 \end{bmatrix}.
\end{align*}
\]

This new constellation forms Figure 1.67’s parallelogram in two dimensions, where the minimum distance is now along the shorter diagonal (between \(\mathbf{x}_1\) and \(\mathbf{x}_3\)), rather than along the sides, but this \(d_{\min} = \sqrt{2^2 + (1 - \sqrt{2})^2} = 2.164 > 2\). Thus, the optimum detector for this channel with self-correlated Gaussian noise has larger minimum distance than for the white noise case, illustrating the important fact that correlated noise is sometimes advantageous.

Example 1.3.14 shows that correlated noise may improve performance with respect to the same channel and signal constellation with white noise of the same average energy. Nevertheless, the noise autocorrelation matrix is often not known in implementation, or it may vary from channel use to channel use. Then, the detector is designed as if white noise were present anyway, and there is a performance loss with respect to the optimum detector. The next subsection calculates this performance loss.

1.3.7.3 Performance of Suboptimal Detection with Self-Correlated Noise

The AWGN channel’s ML detector is suboptimum for the ACGN channel, but often in use anyway because the noise correlation properties may be hard to know in the design stage. In this case, the detector performance reduces with respect to optimum.

Performance reduction computation uses the error-event vectors
\[
\epsilon_{ij} \triangleq \frac{x_i - x_j}{\|x_i - x_j\|}.
\]

The noise vector’s component along an error-event vector is \(\langle n, \epsilon_{ij} \rangle\). The noise variance along this vector is \(\sigma_{ij}^2 \triangleq E\{\langle n, \epsilon_{ij} \rangle^2\}\). Then, the NNUB becomes
\[
P_e \leq N_e \cdot Q\left(\min_{i \neq j} \left\{\frac{\|x_i - x_j\|}{2\sigma_{ij}}\right\}\right).
\]

With whitened noise, then (1.447) simplifies to
\[
P_e \leq N_e \cdot Q\left(\min_{i \neq j} \left\{\frac{\|\mathbf{x}_i - \mathbf{x}_j\|}{2\sigma}\right\}\right) = P_e \leq N_e \cdot Q\left(\min_{i \neq j} \left\{\frac{\tilde{d}_{\min}}{2\sigma}\right\}\right).
\]

because all dimensions have the same whitened noise component, but of course the rotated signals determine a new set of intra-symbol distances, with minimum \(\tilde{d}_{\min} \triangleq \min_{i \neq j} \|\mathbf{x}_i - \mathbf{x}_j\|\)

EXAMPLE 1.3.15 (Worst-Case Colored Noise)

This example continues Example 1.3.14. A second possible QPSK constellation input rotates the original set by 45 degrees, and is the set \(\{z_i=0,1,2,3\}\). The table below summarizes the constellation symbols for both the original case and the new case. The new minimum distance is the same for the entire constellation, so each table row repeats it.

<table>
<thead>
<tr>
<th>(i)</th>
<th>(x_i)</th>
<th>(\tilde{x}_i)</th>
<th>(d_{\min})</th>
<th>(z_i = e^{\pi i/4} \cdot x_i)</th>
<th>(\tilde{z}_i)</th>
<th>(\tilde{d}_{\min})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>([1, 1]^*)</td>
<td>([1, -1 + \sqrt{2}]^*)</td>
<td>2.165</td>
<td>([0, \sqrt{2}]^*)</td>
<td>([0, 2]^*)</td>
<td>1.531</td>
</tr>
<tr>
<td>1</td>
<td>([-1, 1]^*)</td>
<td>([-1, 1 + \sqrt{2}]^*)</td>
<td>2.165</td>
<td>(-\sqrt{2}, 0)^*)</td>
<td>([-\sqrt{2}, \sqrt{2}]^*)</td>
<td>1.531</td>
</tr>
<tr>
<td>2</td>
<td>([-1, -1]^*)</td>
<td>([-1, -1 + \sqrt{2}]^*)</td>
<td>2.165</td>
<td>([0, -\sqrt{2}]^*)</td>
<td>([-2, 0]^*)</td>
<td>1.531</td>
</tr>
<tr>
<td>3</td>
<td>([-1, -1]^*)</td>
<td>([-1, -1 - \sqrt{2}]^*)</td>
<td>2.165</td>
<td>([\sqrt{2}, 0]^*)</td>
<td>([\sqrt{2}, -\sqrt{2}]^*)</td>
<td>1.531</td>
</tr>
</tbody>
</table>
While the original constellation had a larger $d_{\min}(\tilde{z})$, the rotated constellation instead has $d_{\min}(\tilde{x})/d_{\min}(\tilde{z}) = 2.165/1.531 = 3$ dB. If the receiver uses the AWGN ML detector, which again is suboptimum for this colored noise, the noise components along the two dimensions (horizontal and vertical) are the diagonal elements of \mathbf{R}_n. Thus, the AWGN-ML detector’s performance is $d_{\min}/2\sigma = 1/\sigma$ so the same P_e as if the noise were white - but again not the best. The original constellation had minimum distance 2, so 2.165 is 0.69 dB better than if the channel were AWGN. The rotated constellation has instead $1.531/2$, which is -2.31 dB worse. This suggests the AWGN ML detector’s use with unknown noise autocorrelation might be acceptable.

As Chapter 4 will show, these two rotations are indeed the best and worst cases for this noise autocorrelation matrix. Without precise noise knowledge, it is clear that using the AWGN ML detector is not too bad, unless the precise noise correlation is indeed known. Making a mistake by 45 degrees (which could be simple carrier-frequency constant phase offset) would result in a larger loss than simply using the AWGN-based detector.
1. **Finite-Field Channels**

1.4.1 **Discrete Memoryless Channels**

Discrete channels have outputs restricted to a discrete set of possibilities, \(y \in \{y_j\}_{j=0}^{M'} \). Such discrete channels often arise from receiver restrictions. For instance, any channel that samples a continuous distributed output with a finite number of levels through an analog-digital converter effectively creates a discrete channel, where \(M' = 2^{b_{ADC}} \) for \(b_{ADC} \in \mathbb{Z} \) and \(b_{ADC} \geq 1 \) converter bits. More generally, the outputs can be any set of objects as can be the input, but both will map into integers. As always, the most general channel description is \(p_{y/x} \), and Section 1.2’s results apply.

When \(M' = |C| = M \), some orders may be convenient: for instance, the ML detector output that corresponds to message \(\hat{m} = m \) might most simply also have label \(m \). For reasonable channels \(M' \geq |C| = M \) so there is at least one output that a receiver can uniquely map to each possible input.

The discrete-memoryless channel ensures successive channel transmissions are independent, formally:

Definition 1.4.1 (Discrete Memoryless Channel (DMC)) A discrete memoryless channel (DMC) has \(M' \leq M = |C| < \infty \) and successively transmitted messages and corresponding outputs satisfy

\[
P_{y/x} = \prod_{n=1}^{N} p_{y_n/x_n}. \tag{1.449}
\]

The use of \(n \) here is a dimensional index (typically reflecting successive time-based DMC uses). The indices \(j \) and \(i \) reflect instead particular sample values from the discrete distribution. The subscript meaning should be clear from context.

The DMC is used to model situations where successive discrete outputs have no channel-related dependencies. There is no channel-induced “intersymbol interference.” If the inputs are also independent so that \(p_x = \prod_{n=1}^{N} p_{x_n} \), then the DMC’s ML and MAP detectors are a dimensionally indexed series of independent decisions.

An \(M' \times M \) probability matrix often represents the DMC:

\[
P_{y/x} \Delta \equiv \begin{bmatrix} p_{y_{M'-1}/x_{M-1}} & \cdots & p_{y_{M'}/x_0} \\ \vdots & \ddots & \vdots \\ p_{y_0/x_{M-1}} & \cdots & p_{y_0/x_0} \end{bmatrix} = [P_{y_i/x_j}]_{i=0,...,M'; j=0,...,M-1}. \tag{1.450}
\]

Various relationships\(^{43}\) follow directly from the matrix \(P_{y/x} \):

1. **unit column sum** - Each column sums to unity:

\[
1 = \sum_{j=0}^{M'} P_{y_j/x_i}, \quad \forall i = 0, \ldots, M - 1.
\]

2. **weighted row-sum is \(p_y \)** - Each row sums to the corresponding \(y \)-value’s probability:

\[
p_{y_j} = \sum_{i=0}^{M} P_{y_j/x_i} \cdot p_x, \quad \forall j = 0, \ldots, M' - 1.
\]

\(^{43}\)The notation “Diag” means a square diagonal matrix formed from its vector argument with vector elements along the diagonal.
Equivalently, if P_y and P_x are row vectors that stack p_y and p_x values respectively, then
\[
P_y = P_y/x \cdot P_x .
\]

3. **Joint Probability Distribution** - The joint distribution is
\[
P_{y,x} = P_y/x \cdot \text{Diag}\{P_x\} .
\]

4. **À Posteriori Distribution** - The à priori distribution is
\[
P_{x/y} = \left[\text{Diag}\{P_y\}\right]^{-1} \cdot \frac{P_y/x \cdot \text{Diag}\{P_x\}}{P_y/x} .
\]

5. **ML Detector** - An ML detector selects for any specific received DMC channel output $y = v$:
\[
x_i = \arg \left\{ \max_{i \in \{0,\ldots,M-1\}} [P_{v/x_i}] \right\} .
\]

The ML decision region D_i is the set of all row indices $\{j\}$ for which i maximizes those rows’ probabilities in $P_{y/x}$.

6. **MAP Detector** - An MAP detector selects for any specific received DMC channel output $y = v$:
\[
x_i = \arg \left\{ \max_{i \in \{0,\ldots,M-1\}} [P_{v/x_i} \cdot \text{Diag}\{P_x\}] \right\} .
\]

The MAP decision region D_i is the set of all row indices $\{j\}$ for which i maximizes those rows’ probabilities in $P_{y/x} \cdot \text{Diag}\{P_x\}$.

The decision regions basically correspond to rows’ maximum elements; when x_i was transmitted, then this maximum value for that row’s received y value (that is, this y’s row-element i is maximum) is the correct-decision probability $p_y/x_i \cdot p_x_i$ and the decision in error for any $y_j \neq i$. The DMC’s probability of a correct decision, P_c for a specific input x_i simply uses elements from these matrices’ rows as
\[
P_c(\hat{x} = x_i, y = v \in D_i) = \max_i P_{v/x_i} \cdot p_x_i .
\]

The average error probability for a decision $\hat{x} = x_i$ with a optimum-decision-region (or really any decision region corresponding to the a specific) rule D_i and corresponding $P_{y/x=x_i}(v/x_i)$ would then be
\[
P_{c,max} \triangleq E[P_c] = \sum_{i=0}^{M-1} \left\{ \sum_{v \in D_i} P_{y|x=x_i}(v|x_i) \right\} \cdot p_x_i .
\]

Thus the minimum average P_e for the MAP detector can be computed as
\[
P_{c,min} \triangleq 1 - P_{c,max} = 1 - \sum_{i=0}^{M-1} \left\{ \sum_{v \in D_i} P_{y|x=x_i}(v|x_i) \right\} \cdot p_x_i .
\]

The ML detector sets $p_{x_i} = 1/M$ in the above.

An example is Figure 1.68’s **Asymmetric Binary Channel**.
The ABC has without loss of generality \(\frac{1}{2} \geq P_{1/0} \geq P_{0/1} \geq 0 \). The average ABC correct-decision probability (for both sub-optimum ML and MAP because they simplify to the same on this channel) is

\[
P_c = (1 - P_{1/1}) \cdot P_1 + (1 - P_{0/0}) \cdot P_0
\]

or equivalently

\[
P_c = P_{0/1} \cdot P_1 + P_{1/0} \cdot P_0
\]

The different inputs can be interchanged and \(P_c \) also changes when \(P_1 \neq P_{1/0} \neq P_{0/1} \neq P_0 \), a characteristic asymmetry. As the message size increases, most channels are asymmetric.

1.4.2 Symmetric DMCs

A symmetric channel has \(P_c \) invariant to input labelling. That is, the design can relabel the channel inputs (without corresponding permutation of \(P_{y|x} \)’s columns) and maintain the same error probability. The inputs thus are symmetric in their influence on performance. For instance, the AWGN channel with binary-antipodal input restriction is symmetric. The AWGN usually loses symmetry for \(\overline{b} > 1 \). This subsection focuses on symmetric DMC’s.

Definition 1.4.2 (Symmetric Channel) A symmetric channel has MAP-detector \(P_c \) that is independent of input distribution.

The ML detector’s function is always independent of input distribution, but the error probability corresponding to the ML detector’s use on a channel with non-equiprobable inputs is not necessarily input-distribution independent. However, simple review on Section 1.2’s MinimaxTheorem 1.1.2 proves that the ML detector’s use on a symmetric channel as has error probability independent of input distribution. A permutation \(\pi(y) \) reorders \(y \)’s elements so \(\hat{y} = \pi(y) \).

Theorem 1.4.1 (Symmetric DMT Properties) The following statements are equivalent:

1. The DMC is symmetric.
2. The MAP and ML detectors’ error probability \(P_c \) is invariant to input distribution \(P_x \).
3. Any column of \(P_{y|x} \) is a permutation of another column.
4. For any 1-to-1 self-reversible permutation \(\pi = \pi^{-1} \), then \(P_{\pi(y)|x, \pi^{-1}(x)} = P_{y|x} \).
Proof:

- Statements 1 and 2 follow from the definition and the Minimax Theorem 1.1.2, as per above.
- Statement 3 implies that every column is also a permutation of all other columns. This means that the error probability expression in (1.452) may interchange any two $P_{y|x}$ columns i and j with respective corresponding input probabilities p_i and p_j and the resultant expression remains the same, which is the same as statement 1.
- Statement 4 is a mathematical way of stating Statement 3 that often appears elsewhere in coding theory to define the symmetric channel.

QED.

An interesting case occurs when $M' = M$ and thus the symmetric DMC can map inputs to finite field labels $GF(M)$. This new channel description then has $y = x + n$ where n is independent of x. The proof is left as an exercise.

Three commonly encountered symmetric DMCs follow:

1.4.2.1 The Binary Symmetric Channel (BSC)

Figure 1.69 illustrates the binary symmetric channel (BSC). It is the ABC with $p_{1/0} = p_{0/1} = p$. The average error probability, and bit-error probability, is $P_e = P_e = p$.

![Figure 1.69: The Binary Symmetric Channel (BSC)](image)

The BSC finds use in situations where a preliminary decision has already been made on a channel output with bit-error probability then p. Typically, Chapter 2’s codes apply to $N > 1$ successive BSC uses so then symbols will be N-dimensional and binary. By itself with no codes, the BSC redundantly states the bit-error probability and provides no more insight.

1.4.2.2 The Binary Erasure Channel (BEC)

Figure 1.74’s binary erasure channel (BEC) models detector uncertainty. When a channel like an AWGN has a $y = v$ value near a decision boundary, the likelihood of detection error is higher. Rather than decide definitively, a detector may instead choose to mark that decision as an erasure. By itself, the erasure is simply an error, but with coding over $N > 1$ dimensions or BEC uses, some codes can
focus their corrective ability more on erased symbols (bits) than those for which the “inner” detector already has good confidence. For instance, a log-likelihood value near zero might be “erased.”

$$P_{y/x} = \begin{bmatrix} p & 0 \\ 1-p & 1-p \end{bmatrix}$$

Figure 1.70: The Binary Erasure Channel (BEC), 2= erase.

1.4.2.3 The q'ary-DMC

The q-ary symmetric channel typically finds use with systems where blocks of $\log_2(q)$ bits pass through the DMC. All q inputs essentially are equivalent in terms of possible detector error $P_e = p$. Again, outer q-ary codes often apply to blocks of q-ary symbols. Such systems can with small overhead take an error rate like $p = 10^{-4}$ and drive it very close to zero to render the overall system with very high reliability.

Figure 1.71: The q-ary Symmetric Channel (QEC), 2= erase.
1.5 Linear and Non-Linear Single-Message Channel Models
1.6 Time-Varying Statistical Channels
1.7 Disguised Channels
Chapter 1 Exercises

1.1 Our First Constellation - 10 pts

a. Show that the following two basis functions are orthonormal. (2 pts)

\[
\phi_1(t) = \begin{cases} \sqrt{2} \cos(2\pi t) & \text{if } t \in [0, 1] \\ 0 & \text{otherwise} \end{cases}
\]

\[
\phi_2(t) = \begin{cases} \sqrt{2} \sin(2\pi t) & \text{if } t \in [0, 1] \\ 0 & \text{otherwise} \end{cases}
\]

b. Consider the following modulated waveforms.

\[
x_0(t) = \begin{cases} \sqrt{2} \cos(2\pi t) + \sin(2\pi t) & \text{if } t \in [0, 1] \\ 0 & \text{otherwise} \end{cases}
\]

\[
x_1(t) = \begin{cases} \sqrt{2} \cos(2\pi t) + 3 \sin(2\pi t) & \text{if } t \in [0, 1] \\ 0 & \text{otherwise} \end{cases}
\]

\[
x_2(t) = \begin{cases} \sqrt{2} (3 \cos(2\pi t) + \sin(2\pi t)) & \text{if } t \in [0, 1] \\ 0 & \text{otherwise} \end{cases}
\]

\[
x_3(t) = \begin{cases} \sqrt{2} (3 \cos(2\pi t) + 3 \sin(2\pi t)) & \text{if } t \in [0, 1] \\ 0 & \text{otherwise} \end{cases}
\]

\[
x_4(t) = \begin{cases} \sqrt{2} \cos(2\pi t) - \sin(2\pi t) & \text{if } t \in [0, 1] \\ 0 & \text{otherwise} \end{cases}
\]

\[
x_5(t) = \begin{cases} \sqrt{2} \cos(2\pi t) - 3 \sin(2\pi t) & \text{if } t \in [0, 1] \\ 0 & \text{otherwise} \end{cases}
\]

\[
x_6(t) = \begin{cases} \sqrt{2} (3 \cos(2\pi t) - \sin(2\pi t)) & \text{if } t \in [0, 1] \\ 0 & \text{otherwise} \end{cases}
\]

\[
x_7(t) = \begin{cases} \sqrt{2} (3 \cos(2\pi t) - 3 \sin(2\pi t)) & \text{if } t \in [0, 1] \\ 0 & \text{otherwise} \end{cases}
\]

\[
x_{i+8}(t) = -x_i(t) \quad i = 0, \ldots, 7
\]

Draw the constellation points for these waveforms using the basis functions of (a). (2 pts)

c. Compute \(E_x \) and \(\bar{E}_x \) (\(\bar{E}_x = E_x / N \)) where \(N \) is the number of dimensions

(i) for the case where all signals are equally likely. (2 pts)

(ii) for the case where \(2 \) pts

\[p(x_0) = p(x_4) = p(x_8) = p(x_{12}) = \frac{1}{8} \]

and

\[p(x_i) = \frac{1}{24} \quad i = 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15 \]

d. Let

\[y_i(t) = x_i(t) + 4\phi_3(t) \]

where

\[
\phi_3(t) = \begin{cases} 1 & \text{if } t \in [0, 1] \\ 0 & \text{otherwise} \end{cases}
\]

Compute \(E_y \) for the case where all signals are equally likely. (2 pts)
1.2 Inner Products - 10 pts

Consider the following signals:

\[x_0(t) = \begin{cases} \frac{2}{\sqrt{T}} \cos\left(\frac{2\pi t}{T} + \frac{\pi}{6}\right) & \text{if } t \in [0, T] \\ 0 & \text{otherwise} \end{cases} \]

\[x_1(t) = \begin{cases} \frac{2}{\sqrt{T}} \cos\left(\frac{2\pi t}{T} + \frac{5\pi}{6}\right) & \text{if } t \in [0, T] \\ 0 & \text{otherwise} \end{cases} \]

\[x_2(t) = \begin{cases} \frac{2}{\sqrt{T}} \cos\left(\frac{2\pi t}{T} + \frac{3\pi}{2}\right) & \text{if } t \in [0, T] \\ 0 & \text{otherwise} \end{cases} \]

a. Find a set of orthonormal basis functions for this signal set. Show that they are orthonormal.

Hint: Use the identity for \(\cos(a + b) = \cos(a) \cos(b) - \sin(a) \sin(b) \). (4 pts)

b. Find the data symbols corresponding to the signals above for the basis functions you found in (a). (3 pts)

c. Find the following inner products: (3 pts)

(i) \(< x_0(t), x_0(t) > \)
(ii) \(< x_0(t), x_1(t) > \)
(iii) \(< x_0(t), x_2(t) > \)

1.3 Multiple sets of basis functions - 5 pts

Consider the following two orthonormal basis functions:

\[\varphi_1(t) = \frac{1}{\sqrt{3}} \]

\[\varphi_2(t) = \frac{1}{\sqrt{3}} \]

\[u(t) = \begin{cases} 2 \quad \text{if } t \in [2.25, 6.75] \\ 0 & \text{otherwise} \end{cases} \]

\[v(t) = \begin{cases} 1 \quad \text{if } t \in [0, 9] \\ 0 & \text{otherwise} \end{cases} \]

Figure 1.72: Basis functions.

a. Use the basis functions given in Figure 1.72 to find the modulated waveforms \(u(t) \) and \(v(t) \) given the data symbols \(u = [1 \ 1] \) and \(v = [2 \ 1] \). It is sufficient to draw \(u(t) \) and \(v(t) \). (2 pts)

b. For the same \(u(t) \) and \(v(t) \), a different set of two orthonormal basis functions is employed for which \(u = [\sqrt{2} \ 0] \) produces \(u(t) \). Draw the new basis functions and find the \(v \) that produces \(v(t) \). (3 pts)

1.4 Minimal orthonormalization with MATLAB 5 pts

Each column of the matrix \(A \) given below is a data symbol that is used to construct its corresponding modulated waveform from the set of orthonormal basis functions \(\{ \varphi_1(t), \varphi_2(t), \ldots, \varphi_6(t) \} \). The set of modulated waveforms described by the columns of \(A \) can be represented with a smaller number of basis functions.
\[A = \begin{bmatrix} a_0 & a_1 & \ldots & a_7 \end{bmatrix} \]

(1.456)

\[A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\ 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 \\ 2 & 4 & 2 & 4 & 2 & 4 & 2 & 4 \end{bmatrix} \]

(1.457)

The transmitted signals \(a_i(t) \) are represented (with a superscript of * meaning matrix or vector transpose) as

\[a_i(t) = a_i^* \begin{bmatrix} \phi_1(t) \\ \phi_2(t) \\ \vdots \\ \phi_6(t) \end{bmatrix} \]

(1.458)

\[A(t) = A^* \varphi(t) \]

(1.459)

Thus, each row of \(A(t) \) is a possible transmitted signal.

a. Use MATLAB to find an orthonormal basis for the columns of \(A \). Record the matrix of basis vectors.

The MATLAB commands \texttt{help} and \texttt{orth} will be useful. In particular, execution of \(Q = \text{orth}(A) \) in matlab produces a \(6 \times 3 \) orthogonal matrix \(Q \) such that \(Q^*Q = I \) and \(A^* = [A^*Q]Q^* \). The columns of \(Q \) can be thought of as a new basis – thus try writing \(A(t) \) and interpreting to get a new set of basis functions and description of the 8 possible transmit waveforms. The Matlab command of \texttt{help orth} will give a summary of the \texttt{orth} command. To enter the matrix \(B \) in matlab (for example) shown below, simply type \(B=[1~2;~3~4] \);

\[B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \]

(1.460)

b. How many basis functions are actually needed to represent our signal set? What are the new basis functions in terms of \(\{ \phi_1(t), \phi_2(t), \ldots, \phi_6(t) \} \)? (2 pts)

c. Find the new matrix \(\hat{A} \) which gives the data symbol representation for the original modulated waveforms using the smaller set of basis functions found in (b). \(\hat{A} \) will have 8 columns, one for each data symbol. The number of rows in \(\hat{A} \) will be the number of basis functions you found in (b). (1 pts)

1.5 Decision rules for binary channels - 10 pts

a. Figure 1.73’s Binary Symmetric Channel (BSC) has binary (0 or 1) inputs and outputs. It outputs each bit correctly with probability \(1 - p \) and incorrectly with probability \(p \). Assume 0 and 1 are equally likely inputs. State the MAP and ML decision rules for the BSC when \(p < \frac{1}{2} \). How are the decision rules different when \(p > \frac{1}{2} \)? (5 pts)

b. Figure 1.74’s Binary Erasure Channel (BEC) has binary inputs as with the BSC. However there are three possible outputs. Given an input of 0, the output is 0 with probability \(1 - p_1 \) and 2 with probability \(p_1 \). Given an input of 1, the output is 1 with probability \(1 - p_2 \) and 2 with probability \(p_2 \). Assume 0 and 1 are equally likely inputs. State the MAP and ML decision rules for the BEC when \(p_1 < p_2 < \frac{1}{2} \). How are the decision rules different when \(p_2 < p_1 < \frac{1}{2} \)? (5 pts)

1.6 Minimax [Wesel] - 5 pts
Figure 1.73: Binary Symmetric Channel (BSC).

Figure 1.74: Binary Erasure Channel (BEC).

This exercise considers a 1-dimensional vector channel

\[y = x + n \]

where \(x = \pm 1 \), and \(n \) is Gaussian noise with \(\sigma^2 = 1 \). The Maximum-Likelihood (ML) Receiver that is minimax, has decision regions:

\[D_{ML,1} = [0, \infty) \]

and

\[D_{ML,-1} = (-\infty, 0) \]

So if \(y \) is in \(D_{ML,1} \) then an ML receiver decodes \(y \) as \(+1 \); and \(y \) in \(D_{ML,-1} \) decodes as \(-1 \).

This exercise considers another receiver, \(R \), where the decision regions are:

\[D_{R,1} = \left[\frac{1}{2}, \infty \right) \]

and

\[D_{R,-1} = (-\infty, \frac{1}{2}) \]
a. Find $P_{e,ML}$ and $P_{e,R}$ as a function of $p_x(1) = p$ for values of p in the interval $[0, 1]$. On the same graph, plot $P_{e,ML}$ vs. p and $P_{e,R}$ vs. p. (2 pts)

b. Find $\max_p P_{e,ML}$ and $\max_p P_{e,R}$. Are your results consistent with the Minimax Theorem? (2 pts)

c. For what value of p is D_R the MAP decision rule? (1 pt)

Note: For this problem you will need to use the $Q(\cdot)$ function discussed in Appendix B. Here are some relevant values of $Q(\cdot)$.

<table>
<thead>
<tr>
<th>x</th>
<th>$Q(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.3085</td>
</tr>
<tr>
<td>1.0</td>
<td>0.1587</td>
</tr>
<tr>
<td>1.5</td>
<td>0.0668</td>
</tr>
</tbody>
</table>

1.7 Irrelevancy/Decision Regions. (From Wozencraft and Jacobs) - 7 pts

a. Consider the channel in Figure 1.75 where x, n_1, and n_2 are independent binary random variables. All the additions shown below are modulo two. (Equivalently, the additions may be considered xor’s.)

![Figure 1.75: 1st Channel for Irrelevancy/Decision Regions.](image)

- Given only y_1, is y_3 relevant? (1 pt)
- Given y_1 and y_2, is y_3 relevant? (1 pt)

For the rest of the problem, consider the second channel in Figure 1.76. One of the two signals $x_0 = -1$ or $x_1 = 1$ is transmitted over this channel. The noise random variables n_1 and n_2 are statistically independent of the transmitted signal x and of each other. Their density functions are,

$$p_{n_1}(n) = p_{n_2}(n) = \frac{1}{2} e^{-|n|}$$ \hfill (1.461)

b. Given y_1 only, is y_2 relevant? (1 pt)
c. Prove that the optimum decision regions for equally likely messages are shown in Figure 1.77, (3 pts)

d. A receiver chooses x_1 if and only if $(y_1 + y_2) > 0$. Is this receiver optimum for equally likely messages? What is the probability of error? (Hint: $P_e = P\{y_1 + y_2 > 0/x = -1\} \cdot p_x(-1) + P\{y_1 + y_2/x = 1\} \cdot p_x(1)$ and use symmetry. Recall the probability density function of the sum of 2 random variables is the convolution of their individual probability density functions) (4 pts)

e. Prove that the optimum decision regions are modified as indicated in Figure 1.78 when $Pr\{X = x_1\} > 1/2$. (2 pts)
Suppose one of \(M \) equiprobable signals \(x_i(t), \ i = 0, \ldots, M - 1 \) is to be transmitted during a period of time \(T \) over an AWGN channel. Moreover, each signal is identical to all others in the subinterval \([t_1, t_2]\), where \(0 < t_1 < t_2 < T \).

(a) Show that the optimum receiver may ignore the subinterval \([t_1, t_2]\).

(b) Equivalently, show that if \(x_0, \ldots, x_{M-1} \) all have the same projection in one dimension, then this dimension may be ignored.

(c) Does this result necessarily hold true if the noise is Gaussian but not white? Explain.

1.9 Receiver Noise (use MATLAB for all necessary calculations - courtesy S. Li, 2005.) - 13 pts

Each column of \(A \) given below is a data symbol that is used to construct its corresponding modulated waveform from a set of orthonormal basis functions (assume all messages are equally likely):

\[
\Phi(t) = \begin{bmatrix}
\phi_1(t) & \phi_2(t) & \phi_3(t) & \phi_4(t) & \phi_5(t) & \phi_6(t)
\end{bmatrix}.
\]

The matrix \(A \) is given by

\[
A = \begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
5 & 6 & 7 & 8 & 5 & 6 & 7 & 8
\end{bmatrix}
\] (1.462)

so that

\[
x(t) = \Phi(t)A = [x_0(t) \ x_1(t) \ldots \ x_7(t)]
\] (1.463)

A noise vector \(\mathbf{n} = \begin{bmatrix} n1 \\ n2 \\ n3 \\ n4 \\ n5 \\ n6 \end{bmatrix} \) is added to the symbol vector \(\mathbf{x} \), such that
\[y(t) = \Phi(t) \cdot (x + n) \]

where \(n_1...n_6 \) are independent, with \(n_k = \pm 1 \) with equal probability.

The transmitted waveform \(y(t) \) is demodulated using an ML detector. This problem examines the signal-to-noise ratio of the demodulated vector \(y = x + n \) with \(\sigma^2 \triangleq E(n^2) \)

a. Find \(\bar{E}_x, \sigma^2, \) and SNR, \(\bar{E}_x/\sigma^2 \) if all messages are equally likely. (2 pts)

b. Find the minimal number of basis vectors and new matrix \(\hat{A} \) as in Problem 1.4, and calculate the new \(\varepsilon_x, \sigma^2, \) and SNR. (4 points)

c. Let the new vector be \(\tilde{y} = \hat{x} + \hat{n} \), and discuss if the conversion from \(y \) to \(\tilde{y} \) is invariant (namely, if \(P_e \) is affected by the conversion matrix). Compare the detectors for parts a and b. (1 points)

d. Compare \(\tilde{b}, \varepsilon_x \) with the previous system. Is the new system superior? Why or why not? (2 pts)

e. The new system now has three unused dimensions, and the source would like to send 8 more messages by constructing a big matrix \(\bar{A} \), as follows:

\[
\bar{A} = \begin{bmatrix}
\hat{A} & 0 \\
0 & \hat{A}
\end{bmatrix}
\]

Compare \(\tilde{b}, \varepsilon_x \) with the original 6-dimensional system, and the 3-dimensional system in b). (4 pts)

1.10 Tilt - 10 pts

Consider the signal set shown in Figure 1.79 with an AWGN channel and let \(\sigma^2 = 0.1 \).

![Figure 1.79: A Signal Constellation](image)

a. Does \(P_e \) depend on \(L \) and \(\theta \)? (1 pt)

b. Find the nearest neighbor union bound on \(P_e \) for the ML detector assuming \(p_x(i) = \frac{1}{9} \ \forall i \). (2 pts)

c. Find \(P_e \) exactly using the assumptions of the previous part. How close was the NNUB? (5 pts)

d. Suppose there is a minimum energy constraint on the signal constellation. How would this problem’s constellation be altered without changing the \(P_e \)? How does \(\theta \) affect the constellation energy? (2 pts)
1.11 Parseval - 5 pts Consider binary signaling on an AWGN $\sigma^2 = 0.04$ with ML detection for the following signal set. (Hint: consider various ways of computing d_{min})

\[x_0(t) = \text{sinc}^2(t)\]
\[x_1(t) = \sqrt{2} \cdot \text{sinc}^2(t) \cdot \cos(4\pi t)\]

Determine the exact P_e assuming that the two input signals are equally likely. (5 pts)

1.12 Disk storage channel - 10 pts

Binary data storage with a thin-film disk can be approximated by an input-dependent additive white Gaussian noise channel where the noise n has a variance dependent on the transmitted (stored) input. The noise has the following input dependent density:

\[
p(n) = \begin{cases}
\frac{1}{\sqrt{2\pi}\sigma_1^2} e^{-\frac{n^2}{2\sigma_1^2}} & \text{if } x = 1 \\
\frac{1}{\sqrt{2\pi}\sigma_0^2} e^{-\frac{n^2}{2\sigma_0^2}} & \text{if } x = 0
\end{cases}
\]

and $\sigma_1^2 = 31\sigma_0^2$. The channel inputs are equally-likely.

a. For either input, the output can take on any real value. On the same graph, plot the two possible output probability density functions (pdf’s). i.e. Plot the output pdf for $x = 0$ and the output pdf for $x = 1$. Indicate (qualitatively) the decision regions on your graph. (2 pts)

b. Determine the optimal receiver in terms of σ_1 and σ_0. (3 pts)

c. Find σ_0^2 and σ_1^2 if the SNR is 15 dB. SNR is defined as $\frac{\text{SNR}}{\frac{\sigma_1^2 + \sigma_0^2}{2}} = \frac{\sigma_0^2}{\sigma_1^2}$, (1 pt)

d. Determine P_e when SNR = 15 dB. (3 pts)

e. What happens as $\frac{\sigma_1^2}{\sigma_0^2} \rightarrow 0$? You may restrict your attention to the physically reasonable case where σ_1 is a fixed finite value and $\sigma_0 \rightarrow 0$. (1 pt)

1.13 Rotation with correlated noise - 7 pts

A two dimensional vector channel $y = x + n$ has correlated gaussian noise (that is the noise is not white and so not independent in each dimension) such that $E[n_1] = E[n_2] = 0$, $E[n_1^2] = E[n_2^2] = 0.1$, and $E[n_1 n_2] = 0.05$. n_1 is along the horizontal axis, and n_2 is along the vertical axis.

a. Suppose the transmitter uses the constellation in Figure 1.80 with $\theta = 45^\circ$ and $d = \sqrt{2}$. (i.e. $x_1 = (1, 1)$ and $x_2 = (-1, 1)$). Find the mean and mean square values of the noise projected on the line connecting the two constellation points. This value more generally is a function of θ when noise is not white. (2 pts)

b. The noise projected on the line in the previous part is Gaussian. Find P_e for the ML detector. Assume the detector is designed for uncorrelated noise. (2 pts)

c. Fixing $d = \sqrt{2}$, find θ to minimize the ML detector P_e and give the corresponding P_e. You may continue to assume that the receiver is designed for uncorrelated noise. (2 pts)

d. Could your detector in part a be improved by taking advantage of the fact that the noise is correlated? (1 pt)

1.14 Hybrid QAM - 10 pts

Consider the 64 QAM constellation with $d=2$ (see Figure 1.81): The 32 hybrid QAM (\times) is obtained by taking one of two points of the constellation. This problem investigates the properties of such a constellation. Assume all points are equally likely and the channel is an AWGN.
a. Compute the energy E_x of the 64 QAM and the 32 hybrid QAM constellations. (2 pts)

b. Find the NNUB for the probability of error for the 64 QAM and 32 hybrid QAM constellations. (3 pts)

c. What is d_{min} for a 32 Cross QAM constellation having the same energy? (1 pt)

d. Find the NNUB for the probability of error for the 32 Cross QAM constellation. Compare with the 32 hybrid QAM constellation. Which one performs better? Why? (2 pts)

e. Compute the figure of merit for both 32 QAM constellations. Is your result consistent with the one of (d)? (2 pts)

1.15 Ternary Amplitude Modulation - 9 pts

Consider the general case of the 3-D TAM constellation for which the data symbols are,

$$(x_l, x_m, x_n) = \left(\frac{d}{2}(2l - 1 - M^{\frac{1}{3}}), \frac{d}{2}(2m - 1 - M^{\frac{1}{3}}), \frac{d}{2}(2n - 1 - M^{\frac{1}{3}})\right)$$

with $l = 1, 2, \ldots M^{\frac{1}{3}}$, $m = 1, 2, \ldots M^{\frac{1}{3}}$, $n = 1, 2, \ldots M^{\frac{1}{3}}$. Assume that $M^{\frac{1}{3}}$ is an even integer.
a. Show that the energy of this constellation is (2 pts)

\[E_x = \frac{1}{M} \left[3M^\frac{3}{2} \sum_{l=1}^{M^\frac{1}{2}} x_l^2 \right] \]

(1.464)

b. Now show that (3 pts)

\[E_x = \frac{d^2}{4} (M^\frac{3}{2} - 1) \]

c. Find the NNUB \(P_e \) and \(\overline{P}_e \) for an AWGN channel with variance \(\sigma^2 \). (3 pts)

d. Find \(b \) and \(\overline{b} \). (1 pt)

e. Find \(E_x \) and the energy per bit \(E_b \). (1 pt)

f. For an equal number of bits per dimension \(b = \overline{b} \), find the constellation figure of merit for PAM, QAM and TAM constellations with appropriate sizes of M. Compare your results. (2 pts)

1.16 Equivalency of rectangular-lattice constellations - 9 pts

Consider an AWGN system with a SNR = \(\bar{E}/\sigma^2 \) of 22 dB, a target probability of error \(P_e = 10^{-6} \), and a symbol rate \(\frac{1}{T} = 8 \) KHz. The transmit power is 20 dBm.

a. Find the maximum data rate \(R = \frac{b}{T} \) that can be transmitted for (2 pts total this sub part)

(i) PAM (\(\frac{1}{2} \) pt)

(ii) QAM (\(\frac{1}{2} \) pt)

(iii) TAM (1 pt) - see Problem 1.15

b. What is the NNUB normalized probability of error \(\overline{P}_e \) for the systems used in (a). (2 pts)

c. The remainder of this problem only considers QAM systems. Suppose that the desired data rate is 40 Kbps. What is the new transmit power needed to maintain the same probability of error? (The SNR is no longer 22 dB.) (2 pts)

d. With a yet newer SNR of 28 dB, what is the highest data rate that can be reliably sent at the same probability of error \(10^{-6} \)? (1 pt)

1.17 Frequency separation in FSK. (Adapted from Wozencraft & Jacobs) - 5 pts

Consider the following two signals used in a Frequency Shift Key communications system over an AWGN channel.

\[x_0(t) = \begin{cases} \sqrt{\frac{2E_x}{T}} \cdot \cos(2\pi f_0 t) & \text{if } t \in [0,T] \\ 0 & \text{otherwise} \end{cases} \]

\[x_1(t) = \begin{cases} \sqrt{\frac{2E_x}{T}} \cdot \cos(2\pi (f_0 + \Delta) t) & \text{if } t \in [0,T] \\ 0 & \text{otherwise} \end{cases} \]

\[T = 100\mu s \quad f_0 = 10^5 \text{Hz} \quad \sigma^2 = 0.01 \quad E_x = 0.32 \]

a. Find \(P_e \) if \(\Delta = 10^4 \). (2 pts)

b. Find the smallest \(|\Delta| \) such that the same \(P_e \) found in part (a) is maintained. What type of constellation is this ? (3 pts)
In this problem a simple pattern recognition scheme, based on optimum detectors is investigated. The patterns considered consist of a square divided into four smaller squares, as shown in Figure 1.82.

Each square may have two possible intensities, black or white. The class of patterns studied will consist of those having two black squares, and two white squares. For example, some of these patterns are as shown in Figure 1.83.

Each pattern can be encoded into a vector $\mathbf{x} = [x_1 \ x_2 \ x_3 \ x_4]$ where each component indicates the ‘intensity’ of a small square according to the following rule,

- Black square $\Leftrightarrow x_i = 1$
- White square $\Leftrightarrow x_i = -1$

For a given pattern, a set of four sensors take measurements at the center of each small square and outputs $\mathbf{y} = [y_1 \ y_2 \ y_3 \ y_4]$.

$$\mathbf{y} = \mathbf{x} + \mathbf{n} \quad (1.465)$$

Where $\mathbf{n} = [n_1 \ n_2 \ n_3 \ n_4]$ is thermal noise (White Gaussian Noise) introduced by the sensors. The goal of the problem is to minimize the probability of error for this particular case of pattern recognition.

a. What is the total number of possible patterns? (1 pt)

b. Write the optimum decision rule for deciding which pattern is being observed. Draw the corresponding signal detector. Assume each pattern is equally likely. (3 pts)

c. Find the union bound for the probability of error P_e. (2 pts)
d. Assuming that nearest neighbours are at minimum distance, find the NNUB for the probability of error \(P_e \). (2 pts)

1.19 Shaping Gain - 8 pts

Find the shaping gain for the following two-dimensional voronoi regions (decision regions) relative to the square voronoi region. Do this using the continuous approximation for a continuous uniform distribution of energy through the region.

a. equilateral triangle (2 pts)

b. regular hexagon (2 pts)

c. circle (2 pts)

d. Compare these different regions gains and explain the values qualitatively. (2 pts)

HINT: The following geometric identities may be helpful:

<table>
<thead>
<tr>
<th></th>
<th>equilateral triangle</th>
<th>circle</th>
<th>regular hexagon</th>
<th>square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>(\sqrt{3}a^2)</td>
<td>(\pi r^2)</td>
<td>(\frac{3\sqrt{3}}{2}a^2)</td>
<td>(d^2)</td>
</tr>
<tr>
<td>2nd Moment</td>
<td>(\frac{1}{45}a^4)</td>
<td>(\frac{1}{2}\pi r^4)</td>
<td>(\frac{5\sqrt{3}}{8}a^4)</td>
<td>(\frac{1}{6}d^4)</td>
</tr>
</tbody>
</table>

1.20 Recognize the Constellation (From Wozencraft and Jacobs) - 5 pts

On an additive white Gaussian noise channel, determine \(P_e \) for the following signal set with ML detection. The answer will be in terms of \(\sigma^2 \).

(Hint: Plot the signals and then the signal vectors.)

\[
\begin{align*}
 x_1(t) &= \begin{cases}
 1 & \text{if } t \in [0, 1] \\
 0 & \text{otherwise}
 \end{cases} \\
 x_2(t) &= \begin{cases}
 1 & \text{if } t \in [1, 2] \\
 0 & \text{otherwise}
 \end{cases} \\
 x_3(t) &= \begin{cases}
 1 & \text{if } t \in [0, 2] \\
 0 & \text{otherwise}
 \end{cases} \\
 x_4(t) &= \begin{cases}
 1 & \text{if } t \in [2, 3] \\
 0 & \text{otherwise}
 \end{cases} \\
 x_5(t) &= \begin{cases}
 1 & \text{if } t \in [0, 1] \\
 1 & \text{if } t \in [2, 3] \\
 0 & \text{otherwise}
 \end{cases} \\
 x_6(t) &= \begin{cases}
 1 & \text{if } t \in [1, 3] \\
 0 & \text{otherwise}
 \end{cases} \\
 x_7(t) &= \begin{cases}
 1 & \text{if } t \in [0, 3] \\
 0 & \text{otherwise}
 \end{cases} \\
 x_8(t) &= 0
\end{align*}
\]

1.21 Comparing bounds - 6 pts

Consider the following signal constellation in use on an AWGN channel.

\[
\begin{align*}
 x_0 &= (-1, -1) \\
 x_1 &= (1, -1) \\
 x_2 &= (-1, 1) \\
 x_3 &= (1, 1) \\
 x_4 &= (0, 3)
\end{align*}
\]

Leave answers for parts a and b in terms of \(\sigma \).
a. Find the union bound on P_e for the ML detector on this signal constellation. (2 pts)

b. Find the Nearest Neighbor Union Bound on P_e for the ML detector on this signal constellation. (2 pts)

c. Let the SNR = 14 dB and determine a numerical value for P_e using the NNUB. (2 pts)

1.22 Basic QAM Design - 8 pts

Either square or cross QAM can be used on an AWGN channel with SNR = 30.2 dB and symbol rate $1/T = 10^6$.

a. Select a QAM constellation and specify a corresponding integer number of bits per symbol, b, for a modem with the highest data rate such that $P_e < 10^{-6}$. (3 pts)

b. Compute the data rate for part a. (1 pt)

c. Repeat part a if $P_e < 2 \times 10^{-7}$ is the new probability of error constraint. (3 pts)

d. Compute the data rate for part c. (1 pt)

1.23 Basic Detection - One shot or Two? - 10 pts

A 2B1Q signal with $d = 2$ is sent two times in immediate succession through an AWGN channel with transmit filter $p(t)$, which is a scaled version of the basis function. All other symbol times, a symbol value of zero is sent. The symbol period for one of the 2B1Q transmissions is $T = 1$, and the transmit filter is $p(t) = 1$ for $0 < t < 2$ and $p(t) = 0$ elsewhere. At both symbol periods, any one of the 4 messages is equally likely, and the two successive messages are independent. The WGN has power spectral density $N_0/2 = .5$.

a. Draw an optimum (ML) basis detector and enumerate a signal constellation. (Hint: use basis functions.) (3 pts)

b. Find d_{min}. (2 pts)

c. Compute \tilde{N}_e counting only those neighbors that are d_{min} away. (2 pts)

d. Approximate P_e for your detector. (3 pts)

1.24 Discrete Memoryless Channel - 10 pts

Given a channel with $p_{y|x}$ as shown in Figure 1.84: ($y \in \{0, 1, 2\}$ and $x \in \{0, 1, 2\}$)

Figure 1.84: Discrete Memoryless Channel
Let \(p_1 = .05 \)

a. For \(p_x(i) = 1/3 \), find the optimum detection rule. (3 pts)

b. Find \(P_e \) for part a. (3 pts)

c. Find \(P_e \) for the MAP detector if \(p_x(0) = p_x(1) = 1/6 \) and \(p_x(2) = 2/3 \). (4 pts)

1.25 Detection with Uniform Noise - 9 pts

A one-dimensional additive noise channel, \(y = x + n \), has uniform noise distribution

\[
p_n(v) = \begin{cases} \frac{1}{2L} & |v| \leq \frac{L}{2} \\ 0 & |v| > \frac{L}{2} \end{cases}
\]

where \(L/2 \) is the maximum noise magnitude. The input \(x \) has binary antipodal constellation with equally likely input values \(x = \pm 1 \). The noise is independent of \(x \).

a. Design an optimum detector (showing decision regions is sufficient.) (2 pts)

b. For what value of \(L \) is \(P_e < 10^{-6} \)? (1 pt)

c. Find the SNR (function of \(L \)). (2 pts)

d. Find the minimum SNR that ensures error-free transmission. (2 pts)

e. Repeat part d if 4-level PAM is used instead. (2 pts.)

1.26 Can you design or just use formulae? 8 pts

32 CR QAM modulation is used for transmission on an AWGN with \(\frac{N_0}{2} = .001 \). The symbol rate is \(1/T = 400kHz \).

a. Find the data rate \(R \). (1 pt)

b. What SNR is required for \(P_e < 10^{-7} \)? (ignore \(N_e \)). (2 pts)

c. In actual transmitter design, the analog filter rarely is normalized and has some gain/attenuation, unlike a basis function. Thus, the average power in the constellation is calibrated to the actual power measured at the analog input to the channel. Suppose \(\bar{E_x} = 1 \) corresponds to 0 dBm (1 milliwatt), then what is the power of the signals entering the transmission channel for the 32CR in this problem with \(P_e < 10^{-7} \)? (1 pt)

d. *The engineer under stress.* Without increasing transmit power or changing \(\frac{N_0}{2} = .001 \), design a QAM system that achieves the same \(P_e \) at 3.2 Mbps on this same AWGN. (4 pts)

1.27 QAM Design - 10 pts

A QAM system with symbol rate \(1/T=10 \) MHz operates on an AWGN channel. The SNR is 24.5 dB and a \(P_e < 10^{-6} \) is desired.

a. Find the largest constellation with integer \(b \) for which \(P_e < 10^{-6} \). (2 pts)

b. What is the data rate for your design in part a? (2 pts)

c. How much more transmit power is required (with fixed symbol rate at 10 MHz) in dB for the data rate to be increased to 60 Mbps? \((P_e < 10^{-6}) \) (2 pts)

d. With SNR = 24 dB, an reduced-rate alternative mode is enabled to accommodate up to 9 dB margin or temporary increases in the white noise amplitude. What is the data rate in this alternative 9dB-margin mode at the same \(P_e < 10^{-6} \)? (2 pts)

e. What is the largest QAM (with integer \(b \)) data rate that can be achieved with the same power, \(\bar{E_x}/T \), as in part d, but with \(1/T \) possibly altered? (2 pts)
1.28 Basic Detection 12 pts

A vector equivalent to a channel leads to the one-dimensional real system with \(y = x + n \) where \(n \) is exponentially distributed with probability density function

\[
P_n(u) = \frac{1}{\sigma \sqrt{2}} e^{-\frac{1}{\sqrt{2}} |u|} \quad \text{for all } u
\]

(1.466)

with zero mean and variance \(\sigma^2 \). This system uses binary antipodal signaling (with equally likely inputs) with distance \(d \) between the points. We define a function

\[
\tilde{Q}(x) = \begin{cases}
\int_{-\infty}^{\infty} \frac{1}{\sqrt{2}} e^{-\frac{1}{\sqrt{2}} u} du = \frac{1}{\sqrt{2}} e^{-\frac{1}{\sqrt{2}} x} & \text{for } x \geq 0 \\
1 - \int_{|x|}^{\infty} \frac{1}{\sqrt{2}} e^{-\frac{1}{\sqrt{2}} u} du = 1 - \frac{1}{\sqrt{2}} e^{-\frac{1}{\sqrt{2}} |x|} & \text{for } x \leq 0
\end{cases}
\]

(1.467)

a. Find the values \(\tilde{Q}(-\infty), \tilde{Q}(0), \tilde{Q}(\infty), \tilde{Q}(\sqrt{10}) \). (2 pts)
b. For what \(x \) is \(\tilde{Q}(x) = 10^{-6} \)? (1 pt)
c. Find an expression for the probability of symbol error \(P_e \) in terms of \(d, \sigma \), and the function \(\tilde{Q} \). (2 pts)
d. Defining the SNR as \(\text{SNR} = \frac{\bar{E}_x}{\sigma^2} \), find a new expression for \(P_e \) in terms of \(\tilde{Q} \) and this SNR. (2 pts)
e. Find a general expression relating \(P_e \) to SNR, \(M \), and \(\tilde{Q} \) for PAM transmission. (2 pts)
f. What SNR is required for transmission at \(\bar{b} = 1, 2, \) and \(3 \) when \(P_e = 10^{-6} \)? (2 pts)
g. Would you prefer Gaussian or exponential noise if you had a choice? (1 pt)

1.29 QAM Design - 8 pts

QAM transmission is to be used on an AWGN channel with SNR=27.5 dB at a symbol rate of \(1/T = 5 \text{ MHz} \) used throughout this problem. You’ve been hired to design the transmission system. The desired probability of symbol error is \(\bar{P}_e \leq 10^{-6} \).

a. (2 pts) List two basis functions that you would use for modulation.
b. (2 pts) Estimate the highest bit rate, \(\bar{b} \), and data rate, \(R \), that can be achieved with QAM with your design.
c. (1 pt) What signal constellation are you using?
d. (3 pts) By about how much (in dB) would \(\bar{E}_x \) need to be increased to have 5 Mbps more data rate at the same probability of error? Does your answer change for \(\bar{E}_x \) or for \(P_x \)?

1.30 7HEX Constellation - 10 pts

QAM transmission is used on an AWGN channel with \(\frac{N_0}{2} = .01 \). The transmitted signal constellation points for the QAM signal are given by \(\pm \sqrt{3} \), \(0 \), \(0 \), and \(0 \), with each constellation point equally likely.

a. (1 pt) Find \(M \) (message-set size) and \(\bar{E}_x \) (energy per dimension) for this constellation.
b. (2 pts) Draw the constellation with decision regions indicated for an ML detector.
c. (2 pts) Find \(N_e \) and \(d_{\text{min}} \) for this constellation.
d. (2 pts) Compute a NNUB value for \(\bar{P}_e \) for the ML detector of part b.
e. (1 pt) Determine \(\bar{b} \) for this constellation (value may be non-integer).
for the same \bar{b} as part e, how much better in decibels is the constellation of this problem than SQ QAM?

1.31 Radial QAM Constellation - 7 pts

The QAM “radial” constellation in Figure 1.85 is used for transmission on an AWGN with $\sigma^2 = .05$. All constellation points are equally likely.

a. (2 pts) Find E_x and \bar{E}_x for this constellation.

b. (3 pts) Find \bar{b}, d_{min}, and N_e for this constellation.

c. (2 pts) Find P_e and \bar{P}_e with the NNUB for an ML detector with this constellation.

1.32 A concatenated QAM Constellation - 15 pts

A set of 4 orthogonal basis functions \{\(\phi_1(t), \phi_2(t), \phi_3(t), \phi_4(t)\}\} uses the following constellation in both the first 2 dimensions and again in the 2nd two dimensions: The constellation points are restricted in that an E (“even”) point may only follow an E point, and an O (“odd”) point can only follow an O point. For instance, the 4-dimensional point $[+1 + 1 -1 +1]$ is permitted to occur, but the point $[+1 +1 -1 +1]$ cannot occur.

a. (2 pts) Enumerate all M points as ordered-4-tuples.
b. (3 pts) Find b, \bar{b}, and the number of bits/Hz or bps/Hz.

c. (1 pt) Find \mathcal{E}_x and $\bar{\mathcal{E}}_x$ (energy per dimension) for this constellation.

d. (2 pts) Find d_{min} for this constellation.

e. (2 pts) Find N_c and \bar{N}_c for this constellation (you may elect to include only points at minimum distance in computing nearest neighbors).

f. (2 pts) Find P_e and \bar{P}_e for this constellation using the NNUB if used on an AWGN with $\sigma^2 = 0.1$.

g. (3 pts) Compare this 4-dimensional constellation fairly (which requires increasing the number of points in the constellation to 6 to get the same data rate). 4QAM.

1.33 Noise DAC - 15 pts

A random variable x_1 takes the 2 values ±1 with equal probability independently of a second random variable x_2 that takes the values ±2 also with equal probability. The two random variables are summed to $x = x_1 + x_2$, and x can only be observed after zero-mean Gaussian noise of variance $\sigma^2 = .1$ is added, that is $y = x + n$ is observed where n is the noise.

a. (1 pt) What are the values that the discrete random variable x takes, and what are their probabilities? (1 pt)

b. (1 pt) What are the means and variances of x and y?

c. (2 pts) What is the lowest probability of error in detecting x given only an observation of y? Draw corresponding decision regions.

d. (1 pt) Relate the value of x with a table to the values of x_1 and x_2. Explain why this is called a “noisy DAC” channel.

e. (1 pt) What is the (approximate) lowest probability of error in detecting x_1 given only an observation of y?

f. (1 pt) What is the (approximate) lowest probability of error in detecting x_2 given only an observation of y?

g. Suppose additional binary independent random variables are added so that the two bipolar values for x_u are $\pm 2^{u-1}$, $u = 1, ..., U$. Which x_u has lowest probability of error for any AWG noise, and what is that P_e? (1 pt)

h. For $U = 2$, what is the lowest probability of error in detecting x_1 given an observation of y and a correct observation of x_2? (1 pt)

i. For $U = 2$, what is the lowest probability of error in detecting x_2 given an observation of y and a correct observation of x_1? (1 pt)

j. What is the lowest probability of error in any of parts e through i if $\sigma^2 = 0$? What does this mean in terms of the DAC? (1 pt)

k. Derive a general expression for the probability of error for all bits $u = 1, ..., U$ where $x = x_1 + x_2 + ... + x_U$ in AWGN with variance σ^2 for part g? (2 pts)

1.34 Honeycomb QAM - 15 pts

The QAM constellation in Figure 1.87 is used for transmission on an AWGN with symbol rate 10MHz and a carrier frequency of 100 MHz.

Each of the solid constellation symbol possibilities is at the center of a perfect hexagon (all sides are equal) and the distance to any of the closest sides of the hexagon is $\frac{d}{2}$. The 6 empty points represent a possible message also, but each is used only every 6 symbol instants, so that for instance, the point
labelled 0 is a potential message only on symbol instants that are integer multiples of 6. The 1 point can only be transmitted on symbol instants that are integer multiples of 6 plus one, the 2 point only on symbol instants that are integer multiples of 6 plus two, and so on. At any symbol instant, any of the points possible on that symbol are equally likely.

a. What is the number of messages that can be possibly transmitted on any single symbol? What are b and \bar{b}? (3 pts)

b. What is the data rate? (1 pt)

c. Draw the decision boundaries for time 0 of a ML receiver. (2 pts)

d. What is d_{min}? (1 pt)

e. What are E_x and \bar{E}_x for this constellation in terms of d? (3 pts)

f. What is the number of average number nearest neighbors? (1 pt)

g. Determine the NNUB expression that tightly upper bounds \bar{P}_e for this constellation in terms of SNR. (2 pts)

h. Compare this constellation fairly to Cross QAM transmission. (1 pt)

i. Describe an equivalent ML receiver that uses time-invariant decision boundaries and a constant decision device with a simple preprocessor to the decision device. (1 pt).

1.35 Baseband Equivalents - 18 pts

A channel with additive white Gaussian noise has the channel shown in Figure 1.88 with unit gain and and no phase distortion up to 50 MHz. The power spectral density of the noise is -103 dBm/Hz. The transmit power for a QAM modulator is 0 dBm = E_x^T. The initial symbol rate is 1 MHz.

a. Suggest two ideal basis functions that use the lowest possible frequencies for this channel. (2 pts)

b. What is the SNR? (2 pts)

c. What is the data rate R if $\bar{P}_e \leq 10^{-7}$? (2 pts)
Figure 1.88: Channel Response.

d. What is the constellation used for your answer in part c? (1 pt)

e. Draw the modulator, and specify input bits, the message \(m \) and the mapping into the in-phase component \(x_I(t) \) and the quadrature component \(x_Q(t) \). (3 pts)

f. Draw a simple demodulator. (3 pts)

g. What is the highest data rate for \(\bar{P}_e \leq 10^{-7} \) using QAM or PAM and any symbol rate and/or carrier frequency? (3 pts)

h. What is the highest data rate for QAM/PAM if this channel had no filter and was purely an AWGN? (2 pts)

1.36 Comparison - 18 pts

Two passband transmission systems each use a transmit power \(\left(\frac{E_x}{T} \right) \) of 0 dBm to transmit 16 Mbps with a carrier frequency of \(f_c = 10^7 \) Hz over an AWGN characterized by \(\frac{N_0}{2} = -90 \text{dBm/Hz} \). System 1 uses SSB with \(M = 4 \) (looks like 4 PAM) constellation, while System 2 uses 16 QAM. The basis functions are:

System 1:
\[
\phi_1(t) = \frac{1}{\sqrt{T_1}} \cdot \text{sinc}\left(\frac{t}{T_1} \right) \cdot \cos\left(2\pi f_c t \right) - \frac{1}{\sqrt{T_1}} \cdot \text{sinc}\left(\frac{t}{T_1} \right) \cdot \sin\left(2\pi f_c t \right)
\]

System 2:
\[
\phi_1(t) = \frac{1}{\sqrt{T_2}} \cdot \text{sinc}\left(\frac{t}{T_2} \right) \cdot \cos\left(2\pi f_c t \right)
\]
\[
\phi_2(t) = \frac{1}{\sqrt{T_2}} \cdot \text{sinc}\left(\frac{t}{T_2} \right) \cdot \sin\left(2\pi f_c t \right)
\]

(1.468)

a. Complete Table 1.5 below (13 pts).

b. Let represent the total postive bandwidth allowed for transmission and suppose \(W \leq 4 \) MHz. Which system should be used? (1 pt).

c. Suppose \(T \leq 125 \) ns. Which system should be used? (1 pt)

d. With no restrictions on \(W \) nor \(T \) (but maintaining constant transmit power of 0 dBm) and a gap of \(\Gamma = 8.8 \) dB, what is the highest data rate that can be achieved if only QAM designs are allowed? (3 pts)

1.37 Passband Representations - 9 pts

Consider the following passband waveform:
\[
x(t) = \text{sinc}^2(t) \cdot (1 + A \sin(4\pi t)) \cdot \cos(\omega_c t + \frac{\pi}{4}),
\]

where \(\omega_c \gg 4\pi \).

Hint: It may be convenient in working this problem to use the identity \(\cos(a + b) = \cos a \cos b - \sin a \sin b \) to rewrite \(x(t) \) in inphase and quadrature, and to realize/define \(\text{sinc}^2(t) \) equal to a more general pulse shaping function \(p(t) \), recognizing that this particular choice of \(p(t) \) has a fourier transform that is well known and easily sketched.
Table 1.5: Table for Problem 1.100.

<table>
<thead>
<tr>
<th>Quantity desired</th>
<th>System 1</th>
<th>System 2</th>
<th>points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol rate</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>\overline{b}</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>E_x</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>$\overline{E_x}$</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SNR</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>P_e</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>$\overline{P_e}$</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

a. Sketch (roughly) $\text{Re}[X(\omega)]$ and $\text{Im}[X(\omega)]$. (2 pts)

b. Find $x_{bb}(t)$, the baseband equivalent of $x(t)$. Sketch (roughly) $X_{bb}(\omega)$. (3 pts)

c. Find the $x_A(t)$ analytic equivalent of $x(t)$. (2 pts)

d. Find the Hilbert Transform of $x(t)$. (2 pts)

1.38 A Two-Tap Channel - 8 pts

The two equally likely baseband signals, $\tilde{x}_{bb,1}(t)$ and $\tilde{x}_{bb,2}(t)$ illustrated in the following figure are used to transmit a binary sequence over a channel. The use of the scaling phase splitter in Figure 1.55 is assumed. Note that the two signals do not seem to be of the form $(x_1 + jx_2)\varphi(t)$ directly. However, this form can be applied if one views each of these two signals as a succession of four “one-shot” inputs to the channel, each of which can be construed as of the form $(x_1 + jx_2)\varphi(t-iT/4)$, $i = 0, 1, 2, 3$ – this view is not necessary, however, to work this problem. Equivalently, an easy representation is a four-dimensional symbol vector.

The baseband equivalent channel impulse response is

$$h_{bb}(t) = 4\delta(t) - 2\delta(t - T)$$

The transmission rate is $R = \frac{1}{2T}$ bits per second to avoid overlay of successive transmissions.

a. Sketch the two possible baseband-equivalent noise–free received waveforms. (2 pts)

b. Compute the squared distance between the two baseband possible signals as the integral of the squared difference between the two signals at the channel input. Compute the same distance after filtering by the channel impulse response. (2 pts)

c. Determine P_e for transmission of the two corresponding messages where $n_{bb}(t)$ has autocorrelation $r_{bb}(t) = N_0 \cdot \delta(t)$ with $N_0 = \frac{E_x}{2\delta}$ where E_x is the average energy before filtering by the channel response. Compare this to the situation where the channel simply passes $x_{bb}(t)$ with no distortion and gain A, where the channel would then have $h_{bb}(t) = 2\delta(t)$. (4 pts)
1.39 A Bandpass Channel. (from Proakis - 10 pts)

The input $x(t)$ to a bandpass filter is

$$x(t) = u(t) \cdot \cos(w_c t)$$

where

$$u(t) = \begin{cases} A & \text{if } t \in [0,T] \\ 0 & \text{otherwise} \end{cases}$$

Please assume that w_c is sufficiently high that $x(t)$ has only a negligible amount of energy near DC.

a. (3 pts) Determine the output $y(t) = g(t) * x(t)$ of a bandpass filter for all $t \geq 0$ if the impulse response of the filter is,

$$g(t) = \begin{cases} \frac{2}{T} e^{-t/T} \cos(w_c t) & \text{if } t \in [0,T] \\ 0 & \text{otherwise} \end{cases}$$

b. Sketch the equivalent lowpass output of the filter if it is passed through the scaling phase-splitter, $\tilde{y}_{bb}(t) =$? (1 pt)

c. Assume the baseband equivalent noise at the output of the scaling phase splitter has variance N_0 and that there are two dimensions. What is the SNR of the output? (3 pts)

d. For what value of A is the SNR-channel output = 13 dB if the power spectral density of the channel’s AWGN ($\frac{N_0}{2}$) is -30 dBm/Hz and $1/T = 1000$ Hz? Repeat for -100 dBm/Hz and 1 MHz respectively. (3 pts)

1.40 Passband Equivalent System - 5 pts

A baseband-equivalent waveform ($w_c > 2\pi$)

$$\tilde{x}_{bb}(t) = (x_1 + jx_2) \cdot \text{sinc}(t)$$

is convolved with the complex filter

$$w_1(t) = \delta(t) - j\delta(t - 1)$$

a. (1 pt) Find

$$y(t) = w_1(t) * \tilde{x}_{bb}(t)$$
b. (1 pt) Suppose \(y(t) \) is convolved with a second complex filter
\[
w_2(t) = 2j \cdot \text{sinc}(t)
\]
to get the complex filtered signal
\[
z(t) = w_2(t) * y(t) = w_2(t) * w_1(t) * \tilde{x}_{bb}(t) = w(t) * \tilde{x}_{bb}(t),
\]
so that \(z(t) \) is complex, yet corresponds to some passband signal. First find the complex signal \(z(t) \). Note that \(\text{sinc}(t) * \text{sinc}(t - k) = \text{sinc}(t - k) \), when \(k \) is an integer.

c. (3 pts) Let us define an analytic complex signal \(z_A(t) = z(t) \cdot e^{j\omega_c t} \) with real part:
\[
\tilde{z}(t) = \Re \{ z(t) \cdot e^{j\omega_c t} \} = \tilde{w}(t) * \tilde{x}(t),
\]
that is the result of some real filter \(\tilde{w}(t) \) acting on the transmitted passband signal \(\tilde{x}(t) = \Re \{ \tilde{x}_{bb}(t) e^{j\omega_c t} \} \) (when convolved with the passband \(\tilde{x}(t) \) will produce \(\tilde{z}(t) \)). Show that
\[
\tilde{w}(t) = 4 \cdot \text{sinc}(t - 1) \cdot \cos(\omega_c t) - 4 \cdot \text{sinc}(t) \cdot \sin(\omega_c t)
\]
and that correspondingly.
\[
\tilde{w}_{bb}(t) = 4 \cdot [\text{sinc}(t - 1) - j \text{sinc}(t)] .
\]
Hint: Use baseband calculations.

1.41 Matlab demodulator - 10 pts

This problem uses three matlab files: \texttt{x.mat}, \texttt{plt_fft.m}, and \texttt{plt_cplx.m}. These files are available at the web-site

\url{http://web.stanford.edu/group/cioffi/ee379a/ \; \; ; \; ;}.

This problem’s objective is to demodulate three symbols of a passband 4 QAM signal. The baseband basis function is a windowed sinc function. The sampling rate that provided the digital received signal was 1000 Hz. The received signal that this problem uses is the real part of the analytic signal. Usually the signal will have been convolved with a channel response and had noise added, but this problem ignores noise (so it is zero).

a. First, download the three needed files. Execute \texttt{load x.mat} which will create a 747 point vector \(x \) which contains 3 symbol periods of received signal. (Each symbol period is 249 samples). The function \texttt{plt_cplx} plots the real and imaginary parts of a complex vector. It takes two arguments, the vector and the plot title. Execute \texttt{plt_cplx(x, ’received signal’)} to produce a plot (and provide your plot). The received signal should be real. While the constellation points are not readily evident, the three symbols should be fairly evident. (1 pt)

b. Now, execute \texttt{plt_fft(x, ’received signal’)} to plot an FFT of the received signal. Provide the plot. Neglect powers that are 50 dB smaller than other signals and report the frequency range to which this signal is bandlimited (2 pts)

c. Now use the function \texttt{hilbert()} provided by MATLAB to recover the analytic signal \(x_A \). You might want to execute \texttt{help hilbert} to get started. Use \texttt{plt_fft} to plot the FFT of \(x_A \) (and provide the plot). How is this signal different from \(x \)? The discussion may again neglect signals 50 dB below peak signals. (2 pts)

d. The carrier frequency is 250 Hz. As mentioned before, the sampling frequency is 1000 Hz. Show that the discrete time radian carrier frequency is \(\frac{\pi}{2} \) radians/sec. (1 pt)
e. (4 pts) Demodulate \(x_A \) to create the baseband signal \(x_{bb} \) by executing the following command:

\[
x_{bb} = x_A \cdot \exp (-j \cdot 0.5 \cdot \pi \cdot [0:746])
\]

Plot both the FFT and complex time sequence as before (and provide the plots). In what range of frequencies is \(x_{bb} \) non-negligible? Why? By examining the complex time sequence plot, decode the received signal. The complex constellation points have been labeled as shown below. Correct selection of the correct constellation point for each symbol need only consider the sign of the real and imaginary scale factors multiplying the windowed sinc pulse.

![4-QAM constellation with message labels 3, 5, 7 & 9](image)

Figure 1.90: 4-QAM constellation with message labels 3, 5, 7 & 9

1.42 Baseband Analysis - 4 pts

Consider the two baseband equivalent signals, \(\tilde{x}_{bb,1}(t) \) and \(\tilde{x}_{bb,2}(t) \).

\[
\tilde{x}_{bb,1}(t) = \begin{cases}
A (1 + j) & \text{if } t \in [0, T] \\
0 & \text{otherwise}
\end{cases}
\]

\[
\tilde{x}_{bb,2}(t) = \begin{cases}
A (1 - j) & \text{if } t \in [0, \frac{3}{4}T] \\
-A (1 - j) & \text{if } t \in (\frac{3}{4}T, T] \\
0 & \text{otherwise}
\end{cases}
\]

These signals can be used to transmit a binary signal set.

\[
p_{x_{bb1}}(1) = p_{x_{bb2}}(2) = \frac{1}{2}
\]

The transmitted signals are corrupted by AWGN having a baseband equivalent representation corresponding to the scaled phase splitter of Figure 1.55, \(\tilde{n}_{bb}(t) \), with an autocorrelation function

\[
r_{\tilde{n}_{bb}}(\tau) = E [\tilde{n}_{bb}(t)\tilde{n}_{bb}(t + \tau)] = N_0 \delta(t)
\]

a. Find \(E_x \). (2 pts)

b. Find \(P_e \) as a function of \(A \), \(T \) and \(N_0 \). (1 pt)

c. Find \(\frac{A^2}{N_0} \) in terms of \(T \) if SNR=12.5 dB. Compute the probability of error \(P_e \) (a numerical value is required). (1 pt)

1.43 Twisted pairs - 3 pts

Figure 1.91 shows the magnitude(in dB) of the insertion losses (which is 6 dB more than the transfer function \(H(f) \)) for several lengths of two-types of twisted pair. Suppose the signals are passband, with frequencies ranging from 6MHz to 12 MHz. You want to analyse this transmission system in baseband. Assume a carrier frequency of \(f = 9 \) MHz. Assume the receiver uses a scaling phase splitter.

a. Draw the frequency responses of the complex channels to which you would apply the complex modulator input \(\tilde{x}_{bb}(t) \), corresponding to the scaling in Figure 1.55. (1 pt)
Figure 1.91: Insertion loss for 26-gauge (TP1) and 24-gauge (TP2) twisted-pair phone line.

b. Compute the noise power spectral density (two-sided) of the WGN that you would add to each of your complex channel outputs to model transmission if the one-sided power spectral density of the AWGN noise on the channel is given as -140 dBm/Hz. (2 pts)

1.44 Signal Transformation Practice - 4 pts
Find the Hilbert transform of:

\[x(t) = \text{sinc}(\frac{t}{T}) \cos(\omega_c t + \frac{\pi}{4}) \]

where

\[\omega_c \geq \frac{\pi}{T} \] .

1.45 Baseband Analysis with Parseval’s Help - 5 pts
The two baseband equivalent signals at the modulator output using the scaling in Figure 1.55 for binary transmission:

\[\tilde{x}_0(t) = \frac{1}{\sqrt{T}} \text{sinc} \left(\frac{t}{T} \right) + j \sqrt{2} \frac{\pi}{T} \cos(\frac{\pi t}{T}) \cdot \text{sinc}(t/T) \]

\[\tilde{x}_1(t) = j \sqrt{2} \frac{\pi}{T} \sin(\frac{\pi t}{T}) \cdot \text{sinc}(t/T) \]

are transmitted over an AWGN with \(\frac{N_0}{2} = .02 \).

a. Find \(\tilde{X}_0(f) \), \(\tilde{X}_1(f) \), and \(\tilde{X}_0(f) - \tilde{X}_1(f) \). (3 pts)

b. Determine \(P_c \). (2 pts)

1.46 Phase Distortion Only - 8 pts
A passband channel has complex baseband equivalent impulse response

\[h_{bb}(t) = (1 + j)\delta(t) \] .

A 4 QAM (QPSK) input with the constellation labeling below in Figure 1.92 is input to this channel. WGN is added at the output of this channel with power spectral density \(\frac{N_0}{2} = .04 \).

a. Calculate and draw the constellation for the corresponding four signal constellation points at the output of this channel and a scaling demodulator. Call these points \(\tilde{y}_0 \), ..., \(\tilde{y}_3 \) where the subscripts correspond to the subscripts on the channel input. (4 pts)

b. Write a quadrature decomposition for \(\tilde{y}_0 \)’s corresponding passband modulated signal. (2 pts)
c. Sketch the baseband AWGN power spectral density. (2 pts)

1.47 64 Single Sideband (SSB) - (18 pts)
Let \(m(t) \) be an 8-PAM signal with
\[
m(t) = \sum_k x_k \cdot p(t - kT)
\]
where \(x_k = \pm 1, \pm 3, \pm 5, \pm 7 \) and \(p(t) = \text{sinc}(2t/T) \). Also let \(\omega_c >> 2\pi/T \) while forming the single-sideband (SSB) modulated signal
\[
x(t) = m(t) \cos(\omega_c t) - \tilde{m}(t) \sin(\omega_c t)
\]
for transmission over an AWGN with \(\frac{N_0}{2} \) as the power spectral density.

a. Find an analytic signal \(m_A(t) \) that is equivalent to \(x(t) \). Also find \(x_A(t) \) in terms of \(m_A(t) \). (3 pts)
b. Find the Hilbert transform of \(p(t) \), and rewrite your answer to part a without using \(m(t) \). (3 pts)
c. Write an expression for \(\tilde{m}(t) \) in terms of \(x_k \) that uses your result from part b. Evaluate this \(m(t) \) and \(\tilde{m}(t) \) in terms of integer multiple of \(T/2 \) sampling instants, \(n(T/2) \). What does this tell you about the pure phase changing of the Hilbert Transform and any interference at the channel output between successive transmitted symbols \(x_k \)? (2 pts)
d. What is the noise sample variance for the corresponding channel output samples of \(m(t) \)? Find the SNR for this sequence \(m(nT/2) \). Compare this SNR with that of 64SQ QAM on the same change with symbol rate \(1/T \) and the same energy per dimension. (2 pts)
e. Find the single basis function for this SSB transmission system. Was straightforward estimation in part d of the symbol values from \(m(nT/2) \) an ML detector? Why or why not? Now compare again to 64 QAM. (4 pts)
f. Draw a block diagram of a ML receiver for this SSB transmission system using \(\tilde{m}(t) \) also. (4 pts)
g. Why is this signal called 64-VSB or equivalently 64-SSB (and not 8 SSB)? (1 pt)
h. For what \(\frac{N_0}{2} \) is \(P_e < 10^{-6} \)? (answer in terms of \(T \)) (1 pt)

1.48 Complex Channel - Duobinary 1 + D - 19 pts
A complex channel, derived through the scaling of Figure 1.55, has binary inputs \(\tilde{x}_{\text{bb}}(t) \) in Figure 1.93 below. Let the passband filter be \(h_{\text{bb}}(t) = \delta(t) \) and the SNR = \(\frac{\bar{E}_x}{\sigma^2} = 10 \text{ dB} \) and the signal is considered two dimensional (one real and one imaginary dimension) for computation of \(\bar{E}_x \).
1.49 Linear Frequency Decrease in Baseband 11 pts

Figure 1.94 shows the Fourier transform, \(H(f) \), of a bandlimited channel’s impulse response, \(h(t) \). The input to the channel is

\[
x(t) = \sqrt{2} \left\{ \sum_k a_k \cdot \varphi(t - kT) \cdot \cos(\omega_c t) - \sum_k b_k \cdot \varphi(t - kT) \cdot \sin(\omega_c t) \right\}.
\] (1.469)

This channel is used for passband transmission with QAM and has AWGN with (2-sided) power spectral density \(\sigma^2 = .01 \).

\[\begin{array}{c}
\text{Figure 1.94: Figure for “baseband equivalents”.
}\end{array} \]
d. Find the complex channel model, including the channel complex impulse response and a numerical value for the noise power spectral density corresponding to the complex input you found in part c. The channel output should be the $\hat{y}_{bb}(t)$ of Figure 1.55. (2 pts)
e. Find the analytic equivalent $h_A(t)$. (2 pts)
f. Write a simple expression for the Hilbert transform of $h(t)$. $\hat{h}(t) = ?$ (2 pts)

1.50 Linear Frequency Decrease in Passband - 10 pts
The Fourier transform of the impulse response of a channel is shown in Figure 1.95. The power spectral density of the additive Gaussian noise at the output of the channel is shown in Figure 1.96.

You are given the following integrals to avoid any need for doing integration in this problem (i.e., you can plug the formulae)
\[
\int x^2 e^{bx} dx = \frac{e^{bx}}{b^2} (b^2 x^2 - 2bx + 2) ; \quad \int xe^{bx} dx = \frac{e^{bx}}{b^2} (bx - 1) ; \quad \int e^{bx} dx = \frac{e^{bx}}{b} . \quad (1.470)
\]

Throughout this problem, please use the scaling QAM demodulator of Figure 1.57.

a. Draw the Fourier transform of the complex channel, $\frac{1}{T}H_{bb}(f)$, that is used in this text to model the channel. (2 pts)
b. Find the power spectral density per real dimension of the noise in the complex baseband-equivalent channel that results from the scaled demodulator. (1 pt)
c. Find the complex-equivalent pulse response (time-domain) of the channel in part a if the transmitter uses the basis functions of QAM with \(\varphi(t) = \frac{1}{\sqrt{T}} \cdot \text{sinc} \frac{t}{T} \). Interpret if \(a \cdot \sqrt{T} = 1 \) (4 pts)

d. If \(\sigma^2 = 1 \), and the transmitter sends 16 SQ QAM with constellation points \(\left[\pm 3 \pm 1 \right] \), what is the lowest upper bound on the best possible SNR for a symbol-by-symbol detector on this channel? (3 pts)

1.51 Mini-Design - 12 pts

An AWGN with SNR=22 dB has baseband channel transfer function (there is no energy gain or loss in the channel):

\[
H(f) = \begin{cases}
1 & |f| < 500 \text{ kHz} \\
0 & |f| \geq 500 \text{ kHz}
\end{cases}
\]

(1.471)

a. Find an integer \(\tilde{b} \) for QAM transmission with \(P_e < 10^{-6} \) and compare with value found by the “gap approximation.” (2 pts)

b. Find the largest possible symbol rate and corresponding data rate. (2 pts)

c. Draw the corresponding signal constellation and label your points with bits. (2 pts) - hint, don’t concern yourself with clever bit labelings, just do it.

d. Find \(P_b \) and \(N_b \) for your design in part b. (3 pts)

e. Repart part b for PAM transmission on this channel and explain the difference in data rates. (3 pts)

1.52 Offset Carrier - 12 pts

For the AWGN channel with transfer function shown in Figure 1.97, a transmitted signal cannot exceed 1 mW (0 dBm) and the power spectral density is also limited according to \(S_x(f) \leq -83 \text{ dBm/Hz} \) (two-sided psd). The two-sided noise power spectral density is \(\sigma^2 = -98 \text{ dBm/Hz} \). The carrier frequency is \(f_c = 100 \text{ MHz} \) for QAM transmission. The probability of error is \(P_e = 10^{-6} \).

![Figure 1.97: Channel Response.](image)

a. Find the baseband channel model, \(\frac{1}{2} H_{bb}(f) \), for the scaled demodulator of Chapter 2. (2 pts)

b. Find the largest symbol rate that can be used with the 100 MHz carrier frequency? (1 pts)

c. What is the maximum signal power at the channel output with QAM? (2 pts)

d. What QAM data rate can be achieved with the symbol rate of part b? (2 pts)

e. Change the carrier frequency to a value that allows the best QAM data rate. (2 pts)

f. What is the new data rate for your answer in part e? (3 pts)
1.53 Complex Channel and Design - Midterm 2003 - 15 pts

Let \(x_k \) represent the successive independent transmitted symbols of a QAM constellation that can have only an integer number of bits for each symbol and for which each message is equally likely. Also let the pulse response of a filtered AWGN channel be \(p(t) = \sqrt{\frac{1}{T}} \cdot \text{sinc} \left(\frac{t}{T} \right) \) where \(\frac{1}{T} = 5 \text{ Mhz} \) is the symbol rate of the QAM transmission. The carrier frequency is 100 MHz. The transmitted signal has \(\bar{E}_x = 1.2 \) and the AWGN psd is \(\sigma^2 = 0.01 \). An expression for the modulated signal is

\[
x(t) = \Re \left\{ \sum_k x_k \cdot p(t - kT) \cdot e^{j\omega_c t} \right\}.
\]

Define \(g(t) = p(t) \cdot e^{j\omega_c t} \).

a. Find \(x_A(t) \) and \(x_{bb}(t) \). (2 pts)

b. Use the gap approximation to determine the number of bits per dimension, data rate, and the number of bits/second/Hz that can be transmitted on this channel with \(P_e \leq 10^{-6} \). (3 pts)

c. Suppose \(A_k = x_k \cdot e^{j\omega_c kT} \) is the actual message symbol sequence of interest for the rest of this problem. How do your answers in part b change (if at all)? Why? (2 pts)

d. Find the analytic equivalent of the channel output, \(y_A(t) \) in terms of only the message sequence \(A_k \) and \(g(t) \) without any direct use of the carrier frequency. (2 pts)

e. Draw an optimum (MAP) detector for \(A_k \) that does not use the carrier frequency directly. (3 pts)

f. Augment your answer in part e with a simple rotation that provides the MAP detector for \(x_k \). (1 pt)

g. This approach is used in some communications systems where the symbol rate and carrier frequency can be co-generated from the same oscillator, hence the knowledge of the symbol rate in the receiver tacitly implies then also knowing the carrier frequency. This is why the carrier was eliminated in the receiver of part e. Suggest a receiver implementation problem with this approach in general to replace QAM systems that would be used in transmission with symbol rates of up to 10 MHz and carriers above 1 GHz. (Hint - what does \(g(t) \) look like?) (2 pts)

1.54 Partial Response Class IV as a Passband Channel - 15 pts

A 16 QAM constellation is used to transmit a message over a filtered AWGN with SNR = \(\frac{\bar{E}_x}{\sigma^2} = 20 \) dB. The QAM symbol is given by \(\sqrt{\frac{2}{T}} \cdot [x_1 \cdot f(t) + x_2 \hat{f}(t)] \) where \(f(t) = \text{sinc} \left(\frac{t}{T} \right) \). The real channel filter in has the shape shown in Figure 1.98 and is zero outside the frequency band of \((-1/T, 1/T)\).

![Channel Response](image)

Figure 1.98: Channel Response.

a. Show \(f(t) = \text{sinc} \left(\frac{t}{T} \right) \cdot \cos \left(\frac{\pi t}{T} \right) \) using frequency-domain arguments. Then find the Hilbert Transform \(\hat{f}(t) \). (2 pts)
b. Find a quadrature representation for \(x(t) \) and the appropriate carrier frequency \(f_c \). (2 pts)

c. Find \(x_{bb}(t) \) and \(x_A(t) \). (2 pts)

d. Find \(h(t) \), \(h_{bb}(t) \), and \(h_A(t) \). **Hint:** multiplication of a transfer function by the ideal lowpass filter is the same as convolving with a sinc function, which may be useful in converting the obvious frequency-domain answers to the time domain. (2 pts)

e. For the scaled phase splitter of Chapter 2, find the output \(y_{bb}(t) \). (2 pts)

f. Design (draw) an optimum receiver for this single transmitted message using only one sampling device, one delay element, one matched filter, and one adder. Draw the decision regions for a single complex value that ultimately emanates from your receiver. (3 pts)

g. Calculate \(P_e \) for this optimum receiver. (2 pts)

1.55 Vestigially Symmetric Channel Output - 12 pts

![Figure 1.99: Channel Response.](image)

The Fourier Transform \(Y(f) \) of the output after QAM modulation for symbol \(x_k \) and channel and receiver filtering is shown in Figure 1.99. Assume that the receiver filter is of unit norm (unit energy) but is before the scaling phase-splitting operation. The AWGN of this channel (before receiver filtering) has power spectral density of \(\frac{N_0}{2} = 0.01 \), and let \(\bar{E}_x = 1 \).

a. Find \(\tilde{y}_{bb}(t) \) and its Fourier Transform \(\tilde{Y}_{bb}(f) \) after the scaling phase splitter. (2 pts)

b. Find the corresponding power spectral density of the baseband-equivalent noise \(\tilde{S}_{bb}(f) \) (2 pts)

c. Find the highest symbol rate for which there is no ISI. (2 pts)

d. Find the data rate if \(P_e \leq 10^{-6} \) for the symbol rate of part c. (4 pts)

1.56 Baseband Equivalents - Midterm 2008 - 11 pts

Figure 1.100 shows the Fourier Transform \(H(f) \) of a bandlimited channel’s impulse response \(h(t) \). The input to the channel is

\[
x(t) = \sqrt{2} \cdot \left\{ \sum_k a_k \cdot \varphi(t - kT) \right\} \cdot \cos(2\pi f_c t) - \left[\sum_k b_k \cdot \varphi(t - kT) \right] \cdot \sin(2\pi f_c t)
\]

The channel is used for passband transmission with QAM and has AWGN with (2-sided) power spectral density \(\frac{N_0}{2} = 0.01 \).
Figure 1.100: Channel Response.

a. Draw $H_{bb}(f)$. (1 pt)

b. Find $h_{bb}(t)$. (2 pts)

c. Find the input $\tilde{x}_{bb}(t)$ in terms of $\varphi(t)$. (1 pt)

d. For all that follows, let $\varphi(t) = \sqrt{\frac{2}{T}} \cdot \text{sinc} \left(\frac{2t}{T} \right)$. Show the complex channel model, including the channel complex impulse response and a numerical value for the noise power spectral density corresponding to the input you found in part c. Find the channel output $\tilde{y}_{bb}(t)$. (2 pts)

e. Find the analytic equivalent $h_A(t)$. (2 pts)

f. Write a simple expression for the Hilbert transform of $h(t)$, $\tilde{h}(t) = ?$ (2 pts)

g. Find $\tilde{y}(t)$. (1 pt)
Appendix A

Gram-Schmidt Orthonormalization Procedure

This appendix illustrates the construction of a set of orthonormal basis functions $\varphi_n(t)$ from a set of modulated waveforms $\{x_i(t), \ i = 0, ..., M - 1\}$. The process for doing so, and achieving minimal dimensionality is called **Gram-Schmidt Orthonormalization**.

Step 1:

Find a signal in the set of modulated waveforms with nonzero energy and call it $x_0(t)$. Let

$$\varphi_1(t) = \frac{x_0(t)}{\sqrt{\mathcal{E}_x}},$$ \hspace{1cm} (A.1)

where $\mathcal{E}_x = \int_{-\infty}^{\infty} [x(t)]^2dt$. Then $x_0 = [\sqrt{\mathcal{E}_x} \ 0 ... 0]$.

Step i for $i = 2, ..., M$:

- Compute $x_{i-1,n}$ for $n = 1, ..., i - 1$ $(x_{i-1,n} = \int_{-\infty}^{\infty} x_{i-1}(t)\varphi_n(t)dt)$.
- Compute

$$\theta_i(t) = x_{i-1}(t) - \sum_{n=1}^{i-1} x_{i-1,n} \varphi_n(t)$$ \hspace{1cm} (A.2)

- if $\theta_i(t) = 0$, then $\varphi_i(t) = 0$, skip to step $i + 1$.
- If $\theta_i(t) \neq 0$, compute

$$\varphi_i(t) = \frac{\theta_i(t)}{\sqrt{\mathcal{E}_\theta}}$$ \hspace{1cm} (A.3)

where $\mathcal{E}_\theta = \int_{-\infty}^{\infty} [\theta_i(t)]^2dt$. Then $x_{i-1} = [x_{i-1,1} ... x_{i-1,i-1} \sqrt{\mathcal{E}_\theta} \ 0 ... 0]^\prime$.

Final Step:

Delete all components, n, for which $\varphi_n(t) = 0$ to achieve minimum dimensional basis function set, and reorder indices appropriately.
Appendix B

The Q Function

The Q Function is used to evaluate probability of error in digital communication. It is the integral of a zero-mean unit-variance Gaussian random variable from some specified argument to ∞:

Definition B.0.1 (Q Function)

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-\frac{u^2}{2}} du$$ \hspace{1cm} (B.1)

The integral cannot be evaluated in closed form for arbitrary x. Instead, see Figures B.1 and B.2 for a graph of the function that can be used to get numerical values. Note the argument is in dB ($20\log_{10}(x)$).

Note $Q(-x) = 1 - Q(x)$, so we need only plot $Q(x)$ for positive arguments.

We state without proof the following bounds

$$(1 - \frac{1}{x^2}) \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi x^2}} \leq Q(x) \leq \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi x^2}}$$ \hspace{1cm} (B.2)

The upper bound in (B.2) is easily seen to be a very close approximation for $x \geq 3$.

Computation of the probability that a Gaussian random variable u with mean m and variance σ^2 exceeds some value d then uses the Q-function as follows:

$$P\{u \geq d\} = Q(\frac{d-m}{\sigma})$$ \hspace{1cm} (B.3)

The Q-function appears in Figures B.3, B.1, and B.2 for very low SNR (-10 to 0 dB), low SNR (0 to 10 dB), and high SNR (10 to 16 dB) using a very accurate approximation (less than 1% error) formula from the recent book by Leon-Garcia:

$$Q(x) \approx \left[\frac{x-1}{x} + \frac{1}{2} \frac{1}{\sqrt{\pi} \sqrt{x^2 + 2\pi}} \right] e^{-\frac{x^2}{2}} \frac{1}{\sqrt{2\pi}}$$ \hspace{1cm} (B.4)

For the mathematician at heart, $Q(x) = 0.5 \cdot erf c(x/\sqrt{2})$, where erf c is known as the complimentary error function by mathematicians.
Figure B.1: Low SNR Q-Function Values

Figure B.2: High SNR Q-Function Values
Figure B.3: Very Low SNR Q-Function Values
Appendix C

Hilbert Transform

The Hilbert transform is a linear operator that shifts the phase of a sinusoid by 90°:

Definition C.0.1 (Hilbert Transform) The Hilbert Transform of \(x(t) \) is denoted \(\hat{x}(t) \) and is given by

\[
\hat{x}(t) = h(t) * x(t) = \int_{-\infty}^{\infty} \frac{x(u)}{\pi(t-u)} du ,
\]

where

\[
h(t) = \begin{cases}
\frac{1}{\pi} & t \neq 0 \\
0 & t = 0
\end{cases} .
\]

The Fourier Transform of \(h(t) \) is

\[
\mathcal{H}(\omega) = \int_{-\infty}^{\infty} \frac{e^{-j\omega t}}{\pi t} dt = \int_{-\infty}^{\infty} \frac{-j\sin \omega t}{\pi t} dt = \int_{-\infty}^{\infty} \frac{-j\pi u}{\pi u} \text{sgn}(\omega) du = -j \left[\int_{-\infty}^{\infty} \text{sinc}(u) du \right] \text{sgn}(\omega) = -j \text{sgn}(\omega)
\]

Equation (C.7) shows that a frequency component at a positive frequency is shifted in phase by \(-90^\circ\), while a component at a negative frequency is shifted by \(+90^\circ\). Summarizing

\[
\hat{X}(\omega) = -j \text{sgn}(\omega) X(\omega) .
\]

Since \(|\mathcal{H}(\omega)| = 1 \ \forall \ \omega \neq 0 \), then \(|X(\omega)| = |\hat{X}(\omega)| \), assuming \(X(0) = 0 \). This text only considers passband signals with no energy present at DC (\(\omega = 0 \)). Thus, the Hilbert Transform only affects the phase and not the magnitude of a passband signal.

C.1 Examples

Let

\[
x(t) = \cos(\omega_c t) = \frac{1}{2} (e^{j\omega_c t} + e^{-j\omega_c t}) ,
\]

then

\[
\hat{x}(t) = \frac{1}{2} (-je^{j\omega_c t} + je^{-j\omega_c t}) = \frac{1}{2j} (e^{j\omega_c t} - e^{-j\omega_c t}) = \sin(\omega_c t) .
\]
Let
\[x(t) = \sin(\omega_c t) = \frac{1}{2j} (e^{j\omega_c t} - e^{-j\omega_c t}) \] ,
(C.11)
then
\[\hat{x}(t) = \frac{1}{2j} (-j e^{j\omega_c t} - j e^{-j\omega_c t}) = -\frac{1}{2} (e^{j\omega_c t} + e^{-j\omega_c t}) = -\cos(\omega_c t) \] .
(C.12)
Note
\[\hat{\hat{x}}(t) = \bar{h}(t) \ast \bar{h}(t) \ast x(t) = -x(t) \] .
(C.13)
since \((-j \text{sgn}(\omega))^2 = -1 \forall \omega \neq 0\). A correct interpretation of the Hilbert transform is that every sinusoidal component is passed with the same amplitude, but with its phase reduced by 90 degrees.

C.2 Inverse Hilbert

The inverse Hilbert Transform is easily specified in the frequency domain as
\[\mathcal{H}^{-1}(\omega) = j \text{sgn}(\omega) \] ,
(C.14)
or then
\[h^{-1}(t) = \bar{h}(t) = \begin{cases} \frac{-1}{\pi} & t \neq 0 \\ 0 & t = 0 \end{cases} \] .
(C.15)

C.3 Hilbert Transform of Passband Signals

Given a passband signal \(x(t) \), form the quadrature decomposition
\[x(t) = x_I(t) \cos(\omega_c t) - x_Q(t) \sin(\omega_c t) \] (C.16)
and transform \(x(t) \) into the frequency domain
\[X(\omega) = \frac{1}{2} [X_I(\omega + \omega_c) + X_I(\omega - \omega_c)] - \frac{1}{2j} [X_Q(\omega - \omega_c) - X_Q(\omega + \omega_c)] \] .
(C.17)
Equation C.17 shows that if \(X(\omega) = 0 \forall |\omega| > 2\omega_c \) then \(X_I(\omega) = 0 \) and \(X_Q(\omega) = 0 \forall |\omega| > \omega_c \). Using this fact the Hilbert transform \(\hat{X}(\omega) \) is given by
\[\hat{X}(\omega) = \frac{1}{2} [X_I(\omega + \omega_c) - X_I(\omega - \omega_c)] + \frac{1}{2} [X_Q(\omega - \omega_c) + X_Q(\omega + \omega_c)] \] .
(C.18)
The inverse Fourier Transform of \(\hat{X}(\omega) \) then yields
\[\hat{x}(t) = x_I(t) \sin(\omega_c t) + x_Q(t) \cos(\omega_c t) = \Im\{x_A(t)\} \] ,
(C.19)
where \(\Im \) denotes the imaginary part.

\(^1\)Recall \(x_I(t) \) and \(x_Q(t) \) are real signals.
Appendix D

Passband Processes

This appendix investigates properties of the correlation functions for a WSS passband random process \(x(t) \) in its several representations. For a brief introduction to the definitions of random processes see Appendix C.

D.1 Hilbert Transform

Let \(x(t) \) be a WSS real-valued random process and \(\check{x}(t) = \bar{h}(t) \star x(t) \) be its Hilbert transform. By Equation (E.8), the autocorrelation of \(\check{x}(t) \) is

\[
\check{r}_x(\tau) = \bar{h}(\tau) \star \check{x}(\tau) = r_x(\tau). \tag{D.1}
\]

Since \(|\mathcal{H}(\omega)|^2 = 1 \) \(\forall \omega \neq 0 \), and assuming \(S_X(0) = 0 \), then

\[
S_{\check{x}}(\omega) = S_x(\omega). \tag{D.2}
\]

Thus, a WSS random process and its Hilbert Transform have the same autocorrelation function and the same power spectral density.

By Equation (E.13)

\[
\begin{align*}
r_{\check{x},x}(\tau) &= h(\tau) \star r_x(\tau) = \check{r}_x(\tau) \tag{D.3} \\
r_{x,\check{x}}(\tau) &= h^*(\tau) \star r_{x}(\tau) = -h(\tau) \star r_{x}(\tau) = -\check{r}_x(\tau) \tag{D.4}.
\end{align*}
\]

The cross correlation between the random process \(x(t) \) and its Hilbert transform \(\check{x}(t) \) is the Hilbert transform of the autocorrelation function of the random process \(x(t) \).

Note also that

\[
r_{\check{x},x}(\tau) = h(\tau) \star r_x(\tau) = h^*(\tau) \star r_{x}(\tau) = \check{r}_x(\tau) = r_{x,\check{x}}^*(-\tau) = r_{x,\check{x}}(-\tau). \tag{D.5}
\]

By using Equations (D.3), (D.4) and (D.5),

\[
r_{\check{x},x}(\tau) = \check{r}_x(\tau) = -r_{x,\check{x}}(\tau) = -r_{x,\check{x}}(-\tau). \tag{D.6}
\]

Equation (D.6) implies that \(r_{\check{x},x}(\tau) \) is an odd function, and thus

\[
r_{\check{x},x}(0) = 0. \tag{D.7}
\]

That is, a real-valued random process and its Hilbert Transform are uncorrelated at any particular point in time.
D.2 Quadrature Decomposition

The quadrature decomposition for any real-valued WSS passband random process and its Hilbert transform is

\[x(t) = x_I(t) \cos \omega_c t - x_Q(t) \sin \omega_c t \quad \text{(D.8)} \]
\[\hat{x}(t) = x_I(t) \sin \omega_c t + x_Q(t) \cos \omega_c t. \quad \text{(D.9)} \]

The baseband equivalent complex-valued random process is

\[x_{bb}(t) = x_I(t) + j x_Q(t) \quad \text{(D.10)} \]

and the analytic equivalent complex-valued random process is

\[x_A(t) = x(t) + j \hat{x}(t) = x_{bb}(t)e^{j \omega_c t}. \quad \text{(D.11)} \]

The original random process can be recovered as

\[x(t) = \Re \{ x_A(t) \}. \quad \text{(D.12)} \]

The autocorrelation of \(x_A(t) \) is

\[r_A(\tau) = E \{ x_A(t)x_A^*(t-\tau) \} \quad \text{(D.13)} \]
\[= 2 \left(r_x(\tau) + j \hat{r}_x(\tau) \right). \quad \text{(D.14)} \]

The right hand side of Equation (D.14) is twice the analytic equivalent of the autocorrelation function \(r_x(\tau) \). The power spectral density is

\[S_A(\omega) = 4 \cdot S_x(\omega) \quad \omega > 0 \quad \text{(D.15)} \]

The functions in the quadrature decomposition of \(x(t) \) also have autocorrelation functions:

\[r_I(\tau) \overset{\Delta}{=} E \{ x_I(t)x_I^*(t-\tau) \} \quad \text{(D.16)} \]
\[r_Q(\tau) \overset{\Delta}{=} E \{ x_Q(t)x_Q^*(t-\tau) \} \quad \text{(D.17)} \]
\[r_{IQ}(\tau) \overset{\Delta}{=} E \{ x_I(t)x_Q^*(t-\tau) \} \quad \text{(D.18)} \]

One determines

\[r_x(\tau) = E \{ x(t)x^*(t-\tau) \} \quad \text{(D.19)} \]
\[= r_I(\tau) \cos \omega_c t \cos \omega_c (t-\tau) \]
\[- r_Q(\tau) \cos \omega_c t \sin \omega_c (t-\tau) \]
\[- r_{IQ}(\tau) \sin \omega_c t \cos \omega_c (t-\tau) \]
\[+ r_Q(\tau) \sin \omega_c t \sin \omega_c (t-\tau) \]

Standard trigonometric identities simplify (D.19) to

\[r_x(\tau) = \frac{1}{2} \[r_I(\tau) + r_Q(\tau) \] \cos \omega_c \tau \quad \text{(D.20)} \]
\[+ \frac{1}{2} \[r_{IQ}(\tau) - r_{QI}(\tau) \] \sin \omega_c \tau \]
\[- \frac{1}{2} \[r_Q(\tau) - r_I(\tau) \] \cos \omega_c (2t - \tau) \]
\[- \frac{1}{2} \[r_{IQ}(\tau) + r_{QI}(\tau) \] \sin \omega_c (2t - \tau) \]
Strictly speaking, most modulated waveforms are WS cyclostationary with period $T_c = \frac{2\pi}{\omega_c}$, i.e.
$E[x(t)x^*(t-\tau)] = r_x(t, t-\tau) = r_x(t + T_c, t + T_c - \tau)$ (See Appendix C). For cyclostationary random processes a time-averaged autocorrelation function of one variable τ can be defined by $r_x(\tau) = 1/T_c \int_{-T_c/2}^{T_c/2} r_x(t, t - \tau) dt$, and this new time-averaged autocorrelation function will satisfy the properties derived thus far in this section. The next set of properties require that the random process to be WSS, not WS cyclostationary – or equivalently the time-averaged autocorrelation function $r_x(\tau) = 1/T_c \int_{-T_c/2}^{T_c/2} r_x(t, t - \tau) dt$ can be used. An example of a WSS random process is AWGN. Modulated signals often have equal energy inphase and quadrature components with the inphase and quadrature signals derived independently from the incoming bit stream; thus, the modulated signal is then WSS.

For $x(t)$ to be WSS, the last two terms in (D.20) must equal zero. Thus, $r_I(\tau) = r_Q(\tau)$ and $r_{IQ}(\tau) = -r_{QI}(\tau) = -r_{IQ}(\tau)$. The latter equality shows that $r_{IQ}(\tau)$ is an odd function of τ and thus $r_{IQ}(0) = 0$. For $x(t)$ to be WSS, the inphase and quadrature components of $x(t)$ have the same autocorrelation and are uncorrelated at any particular instant in time. Substituting back into Equation D.20,

$$r_x(\tau) = r_I(\tau) \cos(\omega_c \tau) - r_{QI}(\tau) \sin(\omega_c \tau)$$

Equation D.21 expresses the autocorrelation $r_x(\tau)$ in a quadrature decomposition and thus

$$\tilde{r}_x(\tau) = r_I(\tau) \sin(\omega_c \tau) + r_{QI}(\tau) \cos(\omega_c \tau)$$

Further algebra leads to

$$r_{bb}(\tau) = E \{ x_{bb}(t)x_{bb}^*(t - \tau) \}$$

$$= 2 (r_I(\tau) + j r_{QI}(\tau))$$

$$r_{bb}(\tau) = r_{bb}(\tau) e^{j \omega_c \tau}$$

The power spectral density is

$$S_A(\omega) = S_{bb}(\omega - \omega_c) .$$

If $S_x(\omega)$ is symmetric about ω_c, then $S_{bb}(\omega)$ is symmetric about $\omega = 0$ (recall that the spectrum $S_A(\omega)$ is a scaled version of the positive frequencies of $S_X(\omega)$ and $S_{bb}(\omega)$ is $S_A(\omega)$ shifted down by ω_c). In this case $r_{bb}(\tau)$ is real, and using Equation D.24, $r_{QI}(\tau) = 0$. Equivalently, the inphase and quadrature components of a random process are uncorrelated at any lag τ (not just $\tau = 0$) if the power spectral density is symmetric about the carrier frequency. Finally,

$$r_x(\tau) = \frac{1}{2} \Re \{ r_{bb}(\tau) e^{j \omega_c \tau} \} = \frac{1}{2} \Re \{ r_A(\tau) \} .$$

If $x(t)$ is a random modulated waveform, by construction it is usually true that $r_I(\tau) = r_Q(\tau)$ and $r_{IQ}(\tau) = -r_{QI}(\tau) = 0$, so that the constructed $x(t)$ is WSS. For AWGN, $n(t)$ is usually WSS so that $r_I(\tau) = r_Q(\tau)$ and $r_{IQ}(\tau) = -r_{QI}(\tau) = 0$. When a QAM waveform is such that $r_{IQ}(\tau) \neq -r_{QI}(\tau)$ or $r_I(\tau) \neq r_Q(\tau)$, then $x(t)$ is WS cyclostationary with period π/ω_c.

168
Appendix E

Random Processes (By Dr. James Aslanis)

This appendix briefly outlines the fundamental definitions of random processes used in this textbook. Random variables and processes are specified by upper-case letters in this appendix, and the corresponding lower case letters are used as variables of integration. Other sections and appendices relax notation and use the lower-case notation for both.

The natural mathematical construct to describe a noisy communication signal is a random process. Random processes are simply a generalization of random variables. Consider a single sample of a random process, which is described by a random variable \(X \) with probability density \(P_X(x) \). (Often the random process is assumed to be Gaussian but not always). This random variable only characterizes the random process for a single instant of time. For a finite set of time instants, a random vector \(\mathbf{X} = [X_{t_1}, \ldots, X_{t_n}] \) with a joint probability density function \(P_{\mathbf{X}}(x) \) describes the noise. Extension to a countably infinite set of random variables, indexed by \(i \), defines a discrete-time random sequence.

Definition E.0.1 (Discrete-Time Random Sequence) A Discrete-Time Random Sequence \(\{X_i\} \) is a countably infinite, indexed set of random variables described by a joint density function \(P_{\mathbf{X}}(x) \) where \(\mathbf{X} = [X_{t_i}, \ldots, X_{t_{i+n}}] \), where \(i \) is an integer and \(n \) is a positive integer.

The random variables in a random process need not be independent nor identically distributed, although the random variables are all defined on the same sample space. The probability density functions that define a random process do depend on the indices. If the index \(i \) indicates time, then the probability densities are time-varying. Similarly, statistical averages, i.e. \(E[f(X_i)] \), become functions of the index as well. These statistical averages, also known as ensemble averages, should not be confused with averaging over the time index (sometimes referred to as time averaging). For example the mean value of a random variable associated with the tossing of a die is approximated by averaging the values over many independent tosses. The time average is said to converge to the ensemble average (a property also referred to as mean ergodic). In a random process, each random variable in the collection of random variables may have a different probability density function. Time averaging over successive samples may not yield any information about ensemble averages.

Communication systems often observe a realization (function of time) of the random process, also called a sample function. For repetition of the experiment, a different sample function is observed. Thus, the random process \(X_t \) also can be considered an ensemble of sample functions. Statistical averages are computed over the ensemble of sample functions. For certain processes the time averages (i.e. averaging over a single sample function the sequential values in time) may approximate well the ensemble averages.

Random processes are classified by statistical properties that their density functions obey, the most important of which is stationarity.
E.1 Stationarity

Definition E.1.1 (Strict Sense Stationarity) A random process X_t is called strict sense stationary (SSS) if the joint probability density function

$$P_{X_{t_1}, \ldots, X_{t_n}}(x_{t_1}, \ldots, x_{t_n}) = P_{X_{t_1+1}, \ldots, X_{t_{n+1}}}(x_{t_1+t_1}, \ldots, x_{t_n+t_n}) \quad \forall \ n, t, \{t_1, \ldots, t_n\} . \quad (E.1)$$

Roughly speaking the statistics of X_t are invariant to a time shift; i.e. the placement of the origin $t = 0$ is irrelevant.

This text next considers commonly calculated functions of a random process: These functions encapsulate properties of the random processes, and a linear-systems analysis sometimes calculates these functions for processes without knowing the exact statistics of the process. Certain random processes, such as stationary Gaussian processes, are completely described by a collection of these functions.

Definition E.1.2 (Mean) The mean of a random process X_t is

$$E(X_t) = \int_{-\infty}^{\infty} x_t \cdot P_{X_t}(x_t) \cdot dx_t \overset{\Delta}{=} \mu_X(t) . \quad (E.2)$$

In general, the mean is a function of the index t.

Definition E.1.3 (Autocorrelation) The autocorrelation of a random process X_t is

$$E(X_{t_1}X_{t_2}^*) = \int_{-\infty}^{\infty} x_{t_1} \cdot x_{t_2}^* \cdot P_{X_{t_1}X_{t_2}}(x_{t_1}, x_{t_2}) \cdot dx_{t_1} \cdot dx_{t_2} \overset{\Delta}{=} r_X(t_1, t_2) \quad (E.3)$$

In general, the autocorrelation is a two-dimensional function of the pair $\{t_1, t_2\}$. For a stationary process, the autocorrelation is a one-dimensional function of the time difference $t_1 - t_2$ only:

$$E(X_{t_1}X_{t_2}^*) = r_X(t_1 - t_2) = r_X(\tau) \quad (E.4)$$

The stationary process’ autocorrelation also satisfies a Hermitian property $r_X(\tau) = r_X^*(-\tau)$.

Using the mean and autocorrelation functions, also known as the first- and second-order statistics, engineers often define a weaker form of stationarity.

Definition E.1.4 (Wide Sense Stationarity) A random process X_t is called wide sense stationary (WSS) if

a. $E(X_t) = \text{constant}$,
b. $E(X_{t_1}X_{t_2}^*) = r_X(t_1 - t_2)$, i.e. a function of the time difference only.

One can show that SSS \Rightarrow WSS, but WSS $\not\Rightarrow$ SSS. Often, random processes’ analysis only considers their first- and second-order statistics. Such results do not reveal anything about the random process’ higher-order statistics; however, in one special case the stationary random process is completely defined by the lower order statistics. In particular,

Definition E.1.5 (Gaussian Random Process) The joint probability density function of a stationary real Gaussian random process for any set of n indices $\{t_1, \ldots, t_n\}$ is

$$P_X(x) = \frac{1}{(2\pi)^{n/2}(\det \Lambda)^{1/2}} \exp \left[-\frac{1}{2}(x - \mu)\Lambda^{-1}(x - \mu)^\top \right] , \quad (E.5)$$

where the mean vector is given by $\mu = E[X]$, and the covariance matrix is defined as $\Lambda = E[(X - \mu)(X - \mu)^\top]$.

A complex Gaussian random variable has independent Gaussian random variables in both the real and imaginary parts, both with the same variance, which is half the variance of the complex random variable. Then, the distribution is

$$P_X(x) = \frac{1}{(\pi)^{n}(\det \Lambda)} \exp \left[-(x - \mu)\Lambda^{-1}(x - \mu)^\top \right] . \quad (E.6)$$
For a Gaussian random process, the set of random variables \(\{X_{t_1}, \ldots, X_{t_n}\} \) are jointly Gaussian. A Gaussian random process also satisfies the following two important properties:

a. The output response of a linear time-invariant system to a Gaussian input is also a Gaussian random process.

b. A WSS, real-valued, Gaussian random process is SSS.

Much of the analysis in this textbook will consider Gaussian random processes passed through linear time-invariant systems. As a result of the properties listed above, the designer only requires the mean and autocorrelation functions of these processes to characterize them completely. Fortunately, one can calculate the effect of linear time-invariant systems on these functions without explicitly using the probability densities of the random process.

In particular, for a linear time-invariant system defined by an impulse response \(h(t) \), the mean of the output random process \(Y_t \) is

\[
\mu_Y(t) = \mu_X(t) * h(t).
\] (E.7)

The autocorrelation of the output can also be found as

\[
r_Y(t + \tau, t) = r_X(t + \tau, t) * h(t + \tau) * h^*(-t).
\] (E.8)

In addition, many analyses use the correlation between the input and output random processes:

Definition E.1.6 (Cross-correlation) The cross-correlation between the random processes \(X_t \) and \(Y_t \) is given by

\[
E(X_{t_1}Y_{t_2}^*) \triangleq r_{XY}(t_1, t_2).
\] (E.9)

For a jointly WSS random processes, the cross-correlation only depends on the time difference

\[
r_{XY}(t_1, t_2) = r_{XY}(t_1 - t_2) = r_{XY}(\tau).
\] (E.10)

The cross-correlation \(r_{XY}(\tau) \) does not satisfy the Hermitian property that the autocorrelation obeys, but

\[
r_{XY}(\tau) = r_{YX}^*(-\tau).
\] (E.11)

Further

\[
r_{XY}(\tau) = r_X(\tau) * h^*(-\tau)
\] (E.12)

\[
r_{YX}(\tau) = r_X(\tau) * h(\tau)
\] (E.13)

A more general form of stationarity is cyclostationarity, wherein the statistics of the random process are invariant only to specific shifts in the indices.

Definition E.1.7 (Strict Sense Cyclostationarity) A random process is strict sense cyclostationary if the joint probability density function satisfies

\[
P_{X_{t_1}, \ldots, X_{t_n}}(x_{t_1}, \ldots, x_{t_n}) = P_{X_{t_1+T}, \ldots, X_{t_n+T}}(x_{t_1+T}, \ldots, x_{t_n+T}) \forall n, \{t_1, \ldots, t_n\},
\] (E.14)

where \(T \) is called the period of the process.

That is, \(X_{t+kT} \) is statistically equivalent to \(X_t \) \(\forall \ t, k \). Cyclostationarity accounts for the regularity in communication transmissions that repeat a particular operation at specific time intervals; however, within a particular time interval, the statistics are allowed to vary arbitrarily. As with stationarity, a weaker form for cyclostationarity that depends only on the first and second order statistics of the random process is.

Definition E.1.8 (Wide Sense Cyclostationarity) A random process is wide sense cyclostationary if
Thus, the mean and autocorrelation functions of a WS cyclostationary process are periodic functions with period T. Many random signals in communications, such as an ensemble of modulated waveforms, satisfy the WS cyclostationarity properties.

The periodicity of a WS cyclostationary random process would complicate the study of modulated signals without use of the following convenient property. Given a WS cyclostationary random process X_t with period T, the random process $X_{t+\theta}$ is WSS if θ is a uniform random variable over the interval $[0, T]$. Thus, analysis often shall include (or assume) a random phase θ to yield a WSS random process.

Alternatively for a WS cyclostationary random process, there is a time-averaged autocorrelation function.

Definition E.1.9 (Time-Averaged Autocorrelation) The time-averaged autocorrelation of a WS cyclostationary random process X_t is

$$
\bar{r}_X(\tau) = \frac{1}{T} \int_{-T/2}^{T/2} r_X(t + \tau, t) dt .
$$

(E.15)

Since the autocorrelation function $r_X(t + \tau, t)$ is periodic, integration could be over any closed interval of length T in the preceding equation.

As in the study of deterministic signals and systems, frequency domain descriptions are often useful for analyzing random processes. First, this appendix continues with the definitions for deterministic signals.

Definition E.1.10 (Energy Spectral Density) The Energy Spectral Density of a finite energy deterministic signal $x(t)$ is $|X(\omega)|^2$ where

$$
X(\omega) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j\omega t} dt \quad \Delta = \mathcal{F}\{x(t)\}
$$

(E.16)

is the Fourier transform of $x(t)$. Thus, the energy is calculable as

$$
\mathcal{E}_x \Delta = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega < \infty
$$

(E.17)

If the finite energy signal $x(t)$ is nonzero for only a finite time interval, say T, then the time average power in the signal equals $P_x = \mathcal{E}_x / T$.

Communication signals are usually modeled as repeated patterns extending from $(-\infty, \infty)$, in which case the energy is infinite, although the time average power may be finite.

Definition E.1.11 (Power Spectral Density) The power spectral density of a finite power signal defined as

$$
S_x(\omega) = \lim_{T \to \infty} \frac{|X_T(\omega)|^2}{T}
$$

(E.18)

where $X_T(\omega) = \mathcal{F}\{x_T(t)\}$ is the Fourier transform of the truncated signal

$$
x_T(t) = \begin{cases} x(t) & |t| < \frac{T}{2} \\ 0 & \text{otherwise} \end{cases}
$$

(E.19)

Thus, the time average power is calculable as $P_x \Delta = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt = \int_{-\infty}^{\infty} S_x(\omega) d\omega < \infty$

For deterministic signals, the power P_x is a time-averaged quantity.

For a random process, we cannot simply take its Fourier transform to specify the power spectral density. Even if the integral of the random process is well-defined (and we do not present the requisite
mathematical tools in this text), the result would be another random process. Ensemble averages are required for frequency-domain analysis.

For a random process X_t, the ensemble average power, $P_{X_t} \triangleq E[|X_t|^2]$, may vary instantaneously over time. For a WSS random process, however, $P_{X_t} = P_X$ is a constant.

Definition E.1.12 (Power Spectral Density) For a WSS continuous-time random process X_t, the **power spectral density** is

$$S_X(\omega) = \mathcal{F}\{r_x(\tau)\}. \quad (E.20)$$

One can show that $\int_{-\infty}^{\infty} S_X(\omega)d\omega = P_X$.

For a WS cyclostationary random process X_t the autocorrelation function $r_X(t + \tau, t)$, for a fixed time lag τ, is periodic in t with period T. Consequently the autocorrelation function can be expanded using a Fourier series.

$$r_X(t + \tau, t) = \sum_{n=-\infty}^{\infty} \gamma_n(\tau) \cdot e^{j2\pi nt/T}, \quad (E.21)$$

where $\gamma_n(\tau)$ are the Fourier coefficients

$$\gamma_n(\tau) = \frac{1}{T} \int_{-T/2}^{T/2} r_X(t + \tau, t) \cdot e^{-j2\pi nt/T} dt. \quad (E.22)$$

The time average autocorrelation function is then

$$\bar{r}_X(\tau) = \gamma_0(\tau). \quad (E.23)$$

The average power for the WS cyclostationary random process is

$$P_{X_t} = \frac{1}{T} \int_{-T/2}^{T/2} E[|X_t|^2]dt = \bar{r}_X(0) = \gamma_0(0) = \int_{-\infty}^{\infty} G_0(f)df \quad (E.24)$$

where $G_0(f)$ is the Fourier transform of the $n = 0$ Fourier coefficient

$$\mathcal{F}\{\gamma_0(\tau)\} = G_0(f) = \mathcal{F}\{\bar{r}_X(\tau)\}. \quad (E.25)$$

The function $G_0(f)$ is the power spectral density of the WS cyclostationary random process X_t associated with the time average autocorrelation $\bar{r}_X(\tau)$.

For a nonstationary random process, the average power must be calculated by both time and ensemble averaging, i.e. $P_{X_t} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} E[|X_t|^2]dt$.

E.2 Linear Systems

For the linear system defined by $y(t) = h(t) * x(t)$, with a stationary input $x(t)$ and fixed deterministic impulse response $h(t)$, the following relationships are easily proved:

$$r_{YY}(\tau) = h(\tau) * h^*(-\tau) * r_{XX}(\tau) \quad (E.26)$$

and thus

$$S_{YY}(\omega) = |H(\omega)|^2 S_{XX}(\omega). \quad (E.27)$$

These same relations hold in discrete time also.
Bibliography

Index

8AMPM, 53
8SQ, 53

AWGN
 baseband-equivalent, 99
 channel, 38
 filtered, 111
 vector, 39
awgn, 6

Bhattacharya Bound, 64
bi-phase level, 64
biorthogonal constellation, 71
bit-error probability
 average, 57
bit-error rate
 average, 56
bits
 per dimension, 59
block orthogonal, 66
block-error rate, 58
bock-error probability, 58
BPSK, 28
BPSK binary phase-shift keying, 24
cable modem, 80
CAP, 84, 109
capacity, 66
carrier frequency, 90
channel
 2-ray, 103
 baseband-equivalent, 95
discrete, 119
discrete-memoryless, 119
one-shot, 111
scaled model, 97
circular constellations, 72
coding
 lattice, 86
coding gain
 fundamental, 86
 shaping, 86
constellation, 8
 figure of merit, 61
data rate, 8, 9, 59
decision
 region, 17
delta
 discrete, 26
demodulation, 34
demodulator, 24
correlative, 34
matched-filter, 35
detector
 optimum, 8
discrete data transmission, 5
distance
 minimum, 50
DOCSIS, 80
energy
 average, 13
 peak, 87
 per bit, 61
 per dimension, 60
erred second, 58
error
 event, 21, 117
 probability, 14
 bit, 20
 calculation, 17
 optimum, 17
error-free second, 58
Ethernet, 29
factorization
 canonical, 114
five nines, 58
frequency modulation, 64
frequency modulation code, 29
FSK, 67
hexagonal constellations, 88
inner product, 32, 33
inphase component, 90
invariance
 rotational, 46
 translational, 47
irrelevancy, 18
Kronecker delta, 26
LLR, 21
log likelihood ratio, 21
Manchester Coding, 64
Manchester Encoding, 29
MAP Detector, 15
margin, 61
maximum likelihood detector, 15
minimax, 16
minimum energy translate, 49
minimum phase, 115
modulated waveform, 27
modulation, 6
passband, 88
modulator, 24, 27
multipath, 104
nearest neighbors, 54
NNUB
correlated noise, 117
noise
colored, 111
radio-frequency, 111
NRZ, 64
one-shot, 6
orthonormal basis, 26
Paley-Wiener Criterion, 114
Parseval’s Identity, 33
phase
distortion
zero, 97
power, 14
probability
correct, 14
of error, 14
PSK, 72
pulse-duration modulation, 70
pulse-position modulation, 71
QPSK, 42, 65
quadrature component, 90
quadrature decomposition, 90
quality of service, 58
reversibility, 20, 116
RZ, 67
shaping
gain, 86
lattice, 86
signalaseband-equivalent, 91
carrier-modulated, 90
passband, 89
simplex constellation, 69
SNR
cchannel, 61
soft decision, 21
soft information, 21
spectral efficiency, 60
symbol, 5, 9
period, 8
period, 9
rate, 8
vector, 8
union bound, 49
nearest neighbor, 54, 55
volume
fundamental, 86
Voronoï
boundary, 73
Voronoï
region, 73
volume, 73