Appendix G - Matlab Software

G Matlab Software

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.1</td>
<td>Chapter 1 Matlab Software listings</td>
</tr>
<tr>
<td>G.2</td>
<td>Chapter 2 Matlab Software listings</td>
</tr>
<tr>
<td>G.2.1</td>
<td>MAC matlab programs from Section 2.7</td>
</tr>
<tr>
<td></td>
<td>mu_mac.m Multiuser MAC</td>
</tr>
<tr>
<td></td>
<td>SWC.m and macmax.m Simultaneous Water-Filling for MAC</td>
</tr>
<tr>
<td>G.2.2</td>
<td>BC matlab programs from Section 2.8</td>
</tr>
<tr>
<td></td>
<td>mu_bc.m Multiuser BC</td>
</tr>
<tr>
<td></td>
<td>rq.m</td>
</tr>
<tr>
<td></td>
<td>bcmmax.m</td>
</tr>
<tr>
<td></td>
<td>Worst-Case Noise program wcnoise.m and cvx_wcnoise.m</td>
</tr>
<tr>
<td></td>
<td>waterfill.m</td>
</tr>
<tr>
<td>G.3</td>
<td>Chapter 3 Matlab Software listings</td>
</tr>
<tr>
<td></td>
<td>The dfecolor Program</td>
</tr>
<tr>
<td></td>
<td>The dfeRAKE.m program</td>
</tr>
<tr>
<td>G.4</td>
<td>Chapter 4 Matlab Software listings</td>
</tr>
<tr>
<td>G.4.1</td>
<td>waterfill_gn.m program</td>
</tr>
<tr>
<td>G.4.2</td>
<td>DMTra.m program</td>
</tr>
<tr>
<td>G.4.3</td>
<td>DMTma.m program</td>
</tr>
<tr>
<td>G.4.4</td>
<td>Levin Campello Loading Programs</td>
</tr>
<tr>
<td></td>
<td>Levin Campello LC.m</td>
</tr>
<tr>
<td></td>
<td>Margin Adaptive Levin Campello MALC.m</td>
</tr>
<tr>
<td></td>
<td>Levin Campello Rate Adaptive DMT Loading</td>
</tr>
<tr>
<td>G.4.5</td>
<td>TEQ Program</td>
</tr>
<tr>
<td>G.5</td>
<td>Chapter 5 Matlab software listings</td>
</tr>
<tr>
<td>G.5.1</td>
<td>From Subsection 5.1 - GDFE partitioning programs</td>
</tr>
<tr>
<td></td>
<td>fixmod.m</td>
</tr>
<tr>
<td></td>
<td>licols.m</td>
</tr>
<tr>
<td></td>
<td>fixin.m</td>
</tr>
<tr>
<td></td>
<td>computeGDFE Program:</td>
</tr>
<tr>
<td>G.5.2</td>
<td>From Subsection 5.4 - MU MAC programs</td>
</tr>
<tr>
<td></td>
<td>SWF.m program</td>
</tr>
<tr>
<td></td>
<td>maxRMAC_cvx.m</td>
</tr>
<tr>
<td></td>
<td>maxRMACMIMO.m</td>
</tr>
<tr>
<td></td>
<td>maxRMAC.m</td>
</tr>
<tr>
<td></td>
<td>maxRESMAC_cvx.m</td>
</tr>
<tr>
<td></td>
<td>maxRESMACMIMO.m</td>
</tr>
<tr>
<td></td>
<td>minPMAC.m and related programs</td>
</tr>
<tr>
<td></td>
<td>minPMACMIMO</td>
</tr>
<tr>
<td></td>
<td>admMAC.m</td>
</tr>
<tr>
<td>G.5.3</td>
<td>Section 5.5 Duality Programs and BC programs</td>
</tr>
</tbody>
</table>
G.5.4 From Subsection 5.6 matlab programs
mac2bc.m
bc2mac.m
Maximum E-sum MAC sum rate program macmax.m
bcmax.m

G.6 Matlab Programs for spectra calculations in Chapter 6
G.6.1 Rectangular (REC) CPM Spectra Programs
G.6.2 Raised-Cosine (RC) CPM Spectra Programs
G.6.3 Spectrally Raised-Cosine (SRC) CPM Spectra Programs
G.6.4 Gaussian Minimum-Shift Keying (GMSK) CPM Spectra Programs

G.7 Chapter 7 Matlab Software listings
G.7.1 MLSD Programs
mlsd1D.m

G.7.2 APP Programs
BCJR_conv.m
binary.m :
max_bin2.m :

G.8 Programs from Chapter 8
G.8.1 Trellis plotting program
plotnextstates.m

G.8.2 LDPC Code Programs
get_h_matrix.m
systematic.m
nearestNds.m

G.8.3 LDPC Encoder and Decoder Programs
encoder.m
ldpc_decoderspa.m
Routine to call decoder ldpc_main.m

Bibliography
Appendix G

Matlab Software

This appendix provides full listings of the matlab programs in this text. While these programs can be found online at the Cioffi website, it is helpful to have “hardcopy” listing in this file should access be limited. Readers can then retype, or cut and paste, these programs into their preferred use.

No representation is made here or anywhere as to the accuracy of programs, nor is indemnity for any reason in their use. This text focuses on educational uses for communication engineers attempting to understand and design their own systems, taking their own precautions in ensuring all representations they may subsequently make are accurate.

Appendix G sections successively capture matlab software from this text’s successive chapters.
G.1 Chapter 1 Matlab Software listings
G.2 Chapter 2 Matlab Software listings

G.2.1 MAC matlab programs from Section 2.7

mu_mac.m Multiuser MAC

% function [Bu, GU, S0, MSWMFunb, B] = mu_bc(H, AU, Lyu, cb)
% *---
% Inputs: Hu, AU, Usize, cb
% Outputs: Bu, Gunb, Wunb, S0, MSWMFunb
% %
% H: noise-whitened BC matrix [H1; ... ; HU] (with actual noise, not wcn)
% sum-Ly x Lx x N
% AU: Block-row square-root discrete modulators, [A1 ... AU]
% Lx x (U * Lx) x N
% Lyu: # of (output, Lyu) dimensions for each user U ... 1 in 1 x U row vector
% cb: = 1 if complex baseband or 2 if real baseband channel
% %
% GU: unbiased precoder matrices: (Lx U) x (Lx U) x N
% For each of U users, this is Lx x Lx matrix on each tone
% S0: sub-channel dimensional channel SNRs: (Lx U) x (Lx U) x N
% MSWMFunb: users' unbiased diagonal mean-squared whitened matched matrices
% % For each of U cells and Ntones, this is an Lx x Lyu matrix
% Bu - users bits/symbol 1 x U
% the user should recompute SNR if there is a cyclic prefix
% B - the user bit distributions (U x N) in cell array
% %
% %
% *---

function [Bu, Gunb, S0, MSWMFunb, B] = mu_bc(H, AU, Lyu, cb)

[~, U] = size(Lyu);
Bu=zeros(1,U);
[Ly,Lx,N]=size(H);

% Computing Ht: Ht = H*A

%---
S0=cell(U,N);
b=cell(U,N);
for u=1:U
 for n=1:N
 S0{u,n} = zeros(Lx,Lx);
 b{u,n}=0;
 end
end
MSWMFunb=cell(U,N);
Gunb=cell(U,N);

for u=1:U
 for n=1:N
 MSWMFunb{u,n}=zeros(Lx,Lyu(u));
 Gunb{u,n}=zeros(Lx,Lx*sum(Lyu));
 end
end
end

% Use compute GDFE

for u=1:U
 for n=1:N
 [~,Gunbtemp(:,:,n),~,S0temp(:,:,n),MSWMFtemp(:,:,n)]= computeGDFE(...
 H(sum(Lyu(1:u))-Lyu(u)+1:sum(Lyu(1:u)),:,n), AU(:,:,n),cb);
 Gunb{u,n}=Gunbtemp(Lx*(sum(Lyu(1:u))-Lyu(u))+1:Lx*(sum(Lyu(1:u))),:,n);
 S0{u,n}=S0temp(Lx*(sum(Lyu(1:u))-Lyu(u))+1:Lx*(sum(Lyu(1:u))),...
 Lx*(sum(Lyu(1:u))-Lyu(u))+1:Lx*(sum(Lyu(1:u))),n);
 MSWMFunb{u,n}=MSWMFtemp(Lx*(sum(Lyu(1:u))-Lyu(u))+1:Lx*(sum(Lyu(1:u))),:,n);
 B{u,n}= (1/cb)*log2(det(S0{u,n}));
 end
 Bu(u)=sum([B{u,:}],2);
end

SWC.m and macmax.m Simultaneous Water-Filling for MAC

function [Rxx, bsum, bsum_lin] = SWF(Eu, H, Lxu , Rnn, cb)
 %
 % Simultaneous water-filling MAC max rate sum (linear and nonlinear GDFE)
 % The input is space-time domain h, and the user can specify a temporal
 % block symbol size N (essentially an FFT size).
 %
 % Inputs:
 % Eu U x 1 energy/SAMPLE vector. Single scalar equal energy all users
 % any (N/N+nu) scaling should occur BEFORE input to this program.
 % H The FREQUENCY-DOMAIN Ly x sum(Lx(u)) x N MIMO channel for all users.
 % N is determined from size(H) where N = # tones
 % (equally spaced over (0,1/T) at N/T.
 % if time-domain h, H = 1/sqrt(N)*fft(h, N, 3)
 % Lxu 1xU vector of each user's number of antennas
 % Rnn The Ly x Ly x N noise-autocorrelation tensor (last index is per tone)
 % cb cb = 1 for complex, cb=2 for real baseband
 %
 % Outputs:
 % Rxx A block-diagonal psd matrix with the input autocorrelation for each
 % user on each tone. Rxx has size (sum(Lx(u)) x sum(Lx(u)) x N .
 % sum trace(Rxx) over tones and spatial dimensions equal the Eu
 % bsum the maximum rate sum.
 % bsum bsum_lin - the maximum sum rate with a linear receiver
 % b is an internal convergence sum rate value, not output
 %
 % This program is modified version of one originally supplied by student
 % Chris Baca

 function [Rxx, bsum, bsum_lin] = SWF(Eu, H, Lxu , Rnn, cb)
 U = numel(Lxu);
 [Ly, Lx_sum, N] = size(H);

 if numel(Eu) == 1
 Eu = Eu*ones(U);
 end
i = 0;
for n=1:N
Rxx(:,:,n) = diag(zeros(Lx_sum, N));
H(:,:,n)=inv(sqrtm(Rnn(:,:,n)))*H(:,:,n);
end
b = zeros(U, 1);
cum_index=1;
user_ind(1)=1;
for u=2:U
 cum_index = cum_index + Lxu(u);
 user_ind(u) = cum_index;
end
for u = 1:U
 st = user_ind(u);
 if u < U
 en = user_ind(u+1)-1;
 else
 en = Lx_sum;
 end
 for n = 1:N
 Rxx(st:en, st:en,n) = Eu(u)*eye(en-st+1);
 end
end
b = zeros(U);
while 1
 b_prev = b;
 for u = 1:U
 %new user
 st = user_ind(u);
 if u < U
 en = user_ind(u+1)-1;
 else
 en = Lx_sum;
 end
 M_u = zeros(en-st+1,en-st+1, N);
 g_u = [];
 Rnn_un=zeros(Ly,Ly,N);
 for n = 1:N
 %new tone
 Rnn_un(:,:,n) = eye(Ly);
 for v = 1:U
 if v ~= u
 st = user_ind(v);
 if v < U
 en = user_ind(v+1)-1;
 end
 end
 end
 end
 b = zeros(U);
 while 1
 b_prev = b;
 for u = 1:U
 %new user
 st = user_ind(u);
 if u < U
 en = user_ind(u+1)-1;
 else
 en = Lx_sum;
 end
 M_u = zeros(en-st+1,en-st+1, N);
 g_u = [];
 Rnn_un=zeros(Ly,Ly,N);
 for n = 1:N
 %new tone
 Rnn_un(:,:,n) = eye(Ly);
 for v = 1:U
 if v ~= u
 st = user_ind(v);
 if v < U
 en = user_ind(v+1)-1;
 end
 end
 end
 end
 end
 end
 end
end
else
 en = Lx_sum;
end

Hvn = H(:, st:en, n);
Rxxvn = Rxx(st:en, st:en, n);
Rnn_un(:, :, n) = Rnn_un(:, :, n) + Hvn*Rxxvn*Hvn';
end
end

st = user_ind(u);

if u < U
 en = user_ind(u+1)-1;
else
 en = Lx_sum;
end

Hun = H(:, st:en, n);
Hun_til = sqrtm(inv(Rnn_un(:, :, n)))*Hun;

[F, D, M_n] = svd(Hun_til);
s = svd(Hun_til);
M_u(:, :, n) = M_n;
g_u(:, n) = s.^2;
end

g_flat = reshape(g_u, [1, numel(g_u)]);
% [g_sort, ind] = sort(g_flat, 'descend');
[B, E, L_star] = waterfill_gn(g_flat, Eu(u), 0, cb);

L = numel(g_flat);
% Etot = N*Eu(u);
% j = L;
% e = zeros(1,L);
% size(E)
% e(1:L_star)=E;

e = reshape(E, [en-st+1, N]);
b(u,1) = sum(B);

for n = 1:N
 Rxx(st:en, st:en, n) = M_u(:, :, n)*diag(e(:, n))*M_u(:, :, n)';
end
end

i = i+1;
if norm(rms(b_prev-b)) <= 1e-5
break
end
if i>1000
 break
end

% b = b(:,1);
%Hcell = mat2cell(H, Ly, Lx_sum, ones(1,N));
%Hexpand = [blkdiag(Hcell{1,1,:})]
%Rcell = mat2cell(Rxx, Ly, Lx_sum, ones(1,N));
%Rcell = mat2cell(Rxx, Lx_sum, Lx_sum, ones(1,N));
%Rxxexpand = [blkdiag(Rcell{1,1,:})]
%bsum = log2(det(eye(Lx_sum*N)+Hexpand*Rxxexpand*Hexpand'));
%bsum = log2(det(eye(Ly*N)+Hexpand*Rxxexpand*Hexpand'));
bsum=0;
for n=1:N
 bsum=bsum+(1/cb)*log2(det(eye(Ly)+H(:,:,n)*Rxx(:,:,n)*H(:,:,n)' - H(:,indices,n)*Rxx(indices,indices,n)*H(:,indices,n)));
end
bsum=real(bsum);
bs=zeros(1,U);
bsum_lin=0;
for u=1:U
 indices=user_ind(u):user_ind(u)+Lxu(u)-1;
 for n=1:N
 bs(u)=bs(u)+(1/cb)*(log2(det(eye(Ly)+H(:,:,n)*Rxx(:,indices,n)*H(:,:,n)')) - log2(det(eye(Ly)+H(:,:,n)*Rxx(:,indices,n)*H(:,:,n)')));
 end
 bsum_lin=bsum_lin+real(bs(u));
end

% function [Rxx, bsum, bsum_lin] = macmax(Esum, h, Lxu, N, cb)
% Simultaneous water-filling Esum MAC max rate sum (linear & nonlinear GDFE)
% The input is space-time domain h, and the user can specify a temporal
% block symbol size N (essentially an FFT size).
% This program uses the CVX package
% the inputs are:
% Esum The sum-user energy/SAMPLE scalar.
% This will be increased by the number of tones N by this program.
% Each user energy should be scaled by N/(N+nu) if there is cyclic prefix
% This energy is the trace of the corresponding user Rxx (u)
% The sum energy is computed as the sum of the Eu components
% internally.
% h The TIME-DOMAIN Ly x sum(Lx(u)) x N channel for all users
% Lxu The number of antennas for each user 1 x U
% N The number of used tones (equally spaced over (0,1/T) at N/T.
% cb cb = 1 for complex, cb=2 for real baseband
%
% the outputs are:
% Rxx A block-diagonal psd matrix with the input autocorrelation for each
% user on each tone. Rxx has size (sum(Lx(u)) x sum(Lx(u)) x N).
% sum trace(Rxx) over tones and spatial dimensions equal the Eu
% bsum the maximum rate sum.
% bsum bsum_lin - the maximum sum rate with a linear receiver
% b is an internal convergence (vector, rms) value, but not sum rate

function [Rxx, bsum, bsum_lin] = macmax(Esum, h, Lxu, N, cb)

H = fft(h, N, 3); % scaled so that N factor no longer needed in rate calculation
[Ly, Lx, ~] = size(H);
Esum=N*Esum;
if numel(Lxu) > 1
 U = numel(Lxu);
 if sum(Lxu)~=Lx
 error('mismatch between sum of Lxu and Lx');
 end
elseif (Lx/Lxu)~= floor(Lx/Lxu)
 error('invalid Lxu');
else
 U = Lx/Lxu;
 Lxu = Lxu*ones(1,U);
end
idx_end = cumsum(Lxu);
idx_start = [1, idx_end(1:end-1)+1];
idx_exp_end = N*idx_end;
idx_exp_start = [1, idx_exp_end(1:end-1)+1];

Hcell=mat2cell(H, Ly, Lxu, ones(1,N));
Hexpand = zeros(N*Ly,N*Lx);
for u = 1:U
 Hexpand(:,idx_exp_start(u):idx_exp_end(u)) = blkdiag(Hcell{1,u,:});
end
Lxu_max = max(Lxu);

cvx_begin quiet
 cvx_solver mosek
 variable Rxxun(Lxu_max,Lxu_max,N,U) hermitian semidefinite
 Rxxun_cell = reshape(num2cell(Rxxun, [1,2,3]), 1, U);
 for u = 1:U
 Rxxun_cell{u} = Rxxun_cell{u}(1:Lxu(u), 1:Lxu(u),:);
 Rxxun_cell{u} = reshape(num2cell(Rxxun_cell{u},[1,2]), 1, N);
 end
 Rxxun_cell = [Rxxun_cell{:}];
 Rxx = blkdiag(Rxxun_cell{:});
 maximize (1/cb*log2(exp(1))*log_det(eye(N*Ly) + Hexpand*Rxx*Rexpand'))
 subject to
 trace(Rxx) <= Esum;
 cvx_end

bsum=cvx_optval;
Rxxun_cell = reshape(num2cell(Rxxun, [1,2,3]), U, 1);
for u = 1:U
 Rxxun_cell{u} = Rxxun_cell{u}(1:Lxu(u), 1:Lxu(u),:);
 Rxxun_cell{u} = reshape(num2cell(Rxxun_cell{u}, [1, 2]), 1, N);
end
Rxxun_cell = vertcat(Rxxun_cell{:}); % U*N cell array

Rxx = zeros(Lx, Lx, N);
for n=1:N
 Rxx(:,:,n) = blkdiag(Rxxun_cell{:,n});
end

bs=zeros(1,U);
bsum_lin=0;
for u=1:U
 indices=idx_start(u):idx_end(u);
 for n=1:N
 bs(u)=bs(u)+(1/cb)*(log2(det(eye(Ly)+H(:,:,n)*Rxx(:,indices,n)*H(:,:,n)')) - log2(det(eye(Ly)+H(:,:,n)*Rxx(:,indices,n)*H(:,:,n)'- H(:,indices,n)*Rxx(indices,indices,n)*H(:,indices,n)')));
 end
 bsum_lin=bsum_lin+real(bs(u));
end
end

G.2.2 BC matlab programs from Section 2.8

mu_bc.m Multiuser BC
% function [Bu, GU, S0, MSWMFunb, B] = mu_bc(H, AU, Lyu, cb)
%--
% Inputs: H, AU, Lyu, cb
% Outputs: Bu, GU, S0, MSWMFunb
%--

function [Bu, GU, S0, MSWMFunb, B] = mu_bc(H, AU, Lyu, cb)

[~ , U] = size(Lyu);

% % function [Bu, GU, S0, MSWMFunb, B] = mu_bc(H, AU, Lyu, cb)
% Computing Ht: Ht = H*A

S0=cell(U,N);
% b=cell(U,N);
for u=1:U
 for n=1:N
 S0{u,n} = zeros(Lx,Lx);
 b{u,n}=0;
 end
end
MSWMFunb=cell(U,N);
Gunb=cell(U,N);
for u=1:U
 for n=1:N
 MSWMFunb{u,n}=zeros(Lx,Lyu(u));
 Gunb{u,n}=zeros(Lx,Lx*sum(Lyu));
 end
end
% Use compute GDFE
for u=1:U
 for n=1:N
 [~,Gunbtemp(:,:,n),~,S0temp(:,:,n),MSWMFtemp(:,:,n)]= computeGDFE(...
 H(sum(Lyu(1:u))-Lyu(u)+1:sum(Lyu(1:u)),:,n), AU(:,:,n),cb);
 Gunb{u,n}=Gunbtemp(Lx*(sum(Lyu(1:u))-Lyu(u))+1:Lx*(sum(Lyu(1:u))),:,n);
 S0{u,n}=S0temp(Lx*(sum(Lyu(1:u))-Lyu(u))+1:Lx*(sum(Lyu(1:u))),...
 Lx*(sum(Lyu(1:u))-Lyu(u))+1:Lx*(sum(Lyu(1:u))),:,n);
 MSWMFunb{u,n}=MSWMFtemp(Lx*(sum(Lyu(1:u))-Lyu(u))+1:Lx*(sum(Lyu(1:u))),:,n);
 Bu(u,n) = (1/cb)*log2(det(S0{u,n}));
 end
end
Bu(u)=sum([B{u,:}],2);
end

function [R,Q,P] = rq(A, t)
% rq Triangular-orthogonal decomposition
% [R,Q] = rq(A), where A is m-by-n, produces an m-by-n upper triangular
% matrix R and an n-by-n unitary matrix Q so that A = R*Q'.
% [R,Q] = rq(A,0) produces the "economy size" decomposigion.
% If m<n, only the last m columns of R and Q are computed. If m>=n, this
% is teh same as [R,Q] = rq(A).
% [R,Q,P] = rq(A,_) also returns a permutation order P so that
% A(P,:) = R*Q'.

reverse_idx_func = @(X) X(end:-1:1, end:-1:1);
if nargout == 2
 if nargin == 1
 [std_Q, std_R] = qr(reverse_idx_func(A)');
 else
 [std_Q, std_R] = qr(reverse_idx_func(A)', 0);
 end
 P = 0;
elseif nargout == 3
 if nargin == 1
 [std_Q, std_R, std_P] = qr(reverse_idx_func(A)');
 P = reverse_idx_func(std_P);
 [~,] = find(P);
 else
 [std_Q, std_R, std_P] = qr(reverse_idx_func(A)', 0);
 size_P = max(std_P);
 P = (std_P'==1:size_P)';
 P = reverse_idx_func(P);
 [~,] = find(P);
 end
 P = P';
end
Q = reverse_idx_func(std_Q);
R = reverse_idx_func(std_R)';

end

bcmax.m

% function [Rxx, Rwcn, bmax] = bcmax(iRxx, H, Lyu)
%
% Uses cvx_wcnoise.m and rate-adaptive waterfill.m (Lagrange Multiplier based)
%
% Inputs:
% - iRxx: initial input autocorrelation array, size is Lx x Lx x N.
% Only the sum of traces matters, so can initialize to any valid
% autocorrelation matrix Rxx to run wcnoise.
% needs to include factor N/(N+nu) if nu ~= 0
% - H: channel response, size is Ly x Lx x N, w/o sqrt(N)
% normalization
% - Lyu: array number of antennas at each user; scalar Lyu means same for all
%
% Outputs:
% - Rxx: optimized input autocorrelation Lx x Lx x N
% - Rwcn: optimized worst-case noise autocorrelation, with white local noise
% Ly x Ly x N
% - SO IF H is noise-whitened for Rnn, then actual noise is
% Rwcn"(1/2)*Rnn*Rwcn"(*/2)
% - b: maximum sum rate/real-dimension - user must mult by 2 for
% complex case

function [Rxx, Rwcn, bmin] = bcmax(iRxx, H, Lyu)

 [Ly,Lx,N] = size(H);
 total_en = trace(sum(iRxx, 3));
bmin = 0;
ib=zeros(1,N);
Rwcn = zeros(Ly,Ly,N);
for n=1:N % worst-case noise independent over tones for BC
[Rwcn(:,:,n), ib(n)] = cvx_wcnoise(iRxx(:,:,n), H(:,:,n), Lyu);
end

while (abs(sum(ib) - bmin) > 1e-5) %tolerance
% uncomment the following two lines to see how the loop progresses
% bmax
bmin = sum(ib);
% Vector Coding Gains for each tone
M=zeros(Lx,Lx,N);
gains = zeros(Lx,N);
for n=1:N
[V,D,] = svd(Rwcn(:,:,n));
sqD = sqrt(D).*(D>1e-6);
invsqRwcn = V*pinv(sqD)*V';
Htil = invsqRwcn*H(:,:,n);
 [~, g, M(:,:,n)] = svd(Htil);
g=dig(g);
gains(1:length(g),n)=g.^2;
end
% Water-filling step
En = waterfill(total_en, reshape(gains',N*Lx,1), 1);
bvec=0.5*log2(ones(N*Lx,1)+En.*reshape(gains',N*Lx,1))';
bmax = real(sum(bvec));
En=reshape(En,N,Lx)';
% update worst-case-noise step
for n=1:N
newiRxx = M(:,:,n)*diag(En(:,n))*M(:,:,n)';
iRxx(:,:,n) = (iRxx(:,:,n)+newiRxx)/2;
[Rwcn(:,:,n), ib(:,n)] = cvx_wcnoise(iRxx(:,:,n), H(:,:,n), Lyu);
ib(:,n)=real(ib(:,n));
end
Rxx = iRxx;
bmin = sum(ib);
end

Worst-Case Noise program wcnoise.m and cvx_wcnoise.m

% function [Rwcn, bsum] = wcnoise(Rxx, H, Ly, dual_gap, nerr)
% %
% % inputs
% % H is U*Ly by Lx, where
% % Ly is the (constant) number of antennas/receiver,
% % Lx is the number of transmit antennas, and
% % U is the number of users. H can be a complex matrix
% % Rxx is the Lx by Lx input (nonsingular) autocorrelation matrix
% % which can be complex (and Hermitian!)
% % dual_gap is the duality gap, defaulting to 1e-6 in wcnoise
function [Rwcn, bsum] = wcnoise(Rxx, H, Ly, dual_gap, nerr)

switch nargin
 case 3
 dual_gap = 1e-6;
 nerr = 1e-4;
 case 4
 nerr = 1e-4;
end

[n,m] = size(H);
K = n / Ly;

% make sure the input Rxx is strictly hermitian
Rxx = (real(Rxx)+real(Rxx'))/2 + sqrt(-1) * (imag(Rxx)+imag(Rxx'))/2;
for i = 1:m
 Rxx(i,i) = real(Rxx(i,i));
end
if min(eig(Rxx)) < 0
 fprintf('Input Rxx is not positive semi-definite! The answers may be wrong')
end

count = 1;
A = zeros(n,n,n*n);
for i = 1:n
 A(i,i,count) = 1;
 count = count+1;
end
for i = 2:n
 for j = 1:i - 1
 A(i,j,count) = 1;
 A(j,i,count) = 1;
 count = count+1;
 end
end

complexI = sqrt(-1);

for i = 2:n
 for j = 1:i - 1

\begin{verbatim}
A(i,j,count) = complexI;
A(j,i,count) = -complexI;
count = count+1;
end
end

map = zeros(n,n);
for i = 1:K
 map((i-1) * Ly + 1:i * Ly,(i-1) * Ly + 1:i * Ly) = ones(Ly,Ly);
end

NT_max_it = 1000; % Maximum number of Newton's method iterations
dual_gap = 1e-6;
mu = 10; % step size for t
alpha = 0.001; % back tracking line search parameters
beta = 0.5;
count = 1;
\% acceptable error for inner loop
v_0 = zeros(n*n,1); % Strictly feasible point;
v_0(1:n) = 0.5 * ones(n,1);
v = v_0;
t = 1;
l_v = 1; % lambda(v) for newton's method termination

while (1+n*n)/t > dual_gap
 t = t * mu;
l_v = 1;
count = 1;
end

while l_v > nerr && count < NT_max_it
 f_val = 0; % calculating function value
 Rwcn = zeros(n,n);
 Rzprime = zeros(n,n);
 for i = 1:n*n % computing Rz
 Rwcn = Rwcn + v(i) * A(:,:,i);
 end
 for i = 1:K
 Rzprime((i-1) * Ly + 1:i * Ly,(i-1) * Ly + 1:i * Ly) = Rwcn((i-1) * Ly + 1:i * Ly,(i-1) * Ly + 1:i * Ly);
 end
 \% the real operation is not needed below as determinant of a Hermitian matrix is always real, it is included for avoiding numerical issues
 f_val = t * log(real(det(H * Rxx * H' + Rwcn))) - (t + 1) * log(real(det(Rwcn))) - log(real(det(eye(n) - Rzprime)));
end
\end{verbatim}
S = inv(H * Rxx * H' + Rwcn);
Q = inv(eye(n) - Rzprime);
Rz_inv = inv(Rwcn);

g = zeros(n*n,1);
h = zeros(n*n,n*n);

for i = 1:n*n
 g(i) = t * trace(A(:,:,i) * S) - (t + 1) * trace(A(:,:,i) * Rz_inv)...
 + (sum(sum(A(:,:,i) .* map)) ~= 0) * trace(A(:,:,i) * Q); % gradient
end

% make sure g is always real (gradient of a real function with respect to real variables)
g = real(g);

for i = 1:n*n
 for j = 1:n*n
 h(i,j) = -t * trace(A(:,:,i) * S * A(:,:,j) * S) + (t + 1) * trace(A(:,:,i) * Rz_inv * A(:,:,j) * Rz_inv)...
 + (sum(sum(A(:,:,i) .* map)) ~= 0) * (sum(sum(A(:,:,j) .* map)) ~= 0) * trace(A(:,:,i) * Q * A(:,:,j) * Q); % hessian
 end
end

% make sure h is always real (gradient of a real gradient values)
% make sure he is symmetric
h = (h+h')/2;
h = real(h);

dv = real(-h
g); % search direction
v_min = min(abs(dv));
s = 1; % checking v = v+s*dx feasible % and also back tracking algorithm

while 1
 v_new = v + s * dv;
 Rz_new = zeros(n,n);
 for i = 1:n*n
 Rz_new = Rz_new + v_new(i) * A(:,:,i);
 end
 for i = 1:K
 Rzprime((i-1) * Ly + 1:i * Ly,(i-1) * Ly + 1:i * Ly) = Rz_new((i-1) * Ly + 1:i * Ly,(i-1) * Ly + 1:i * Ly);
 end
 f_new = t * log(real(det(H * Rxx * H' + Rz_new))) - (t + 1) * log(real(det(Rz_new))) - log(real(det(eye(n) - Rzprime)));
 feas_check = 1;
end
if real(eig(Rz_new)) > zeros(n,1)
 feas_check = 1;
else
 feas_check = 0;
end
if real(eig(eye(n) - Rzprime)) > zeros(n,1)
 feas_check = 1;
else
 feas_check = 0;
end
if feas_check == 1
 feas_check = feas_check * (f_new < f_val + alpha * s * g' * dv);
end
if feas_check == 1
 break
end

s = s * beta;
if s < 1e-30 * v_min
 % s is too small, break the while loop
 s = 0;
 break;
end

v = v + s * dv; % update v
l_v = -g'*dv ; % lambda(v)^2 for Newton's method
if s > 0
 % valid step size returned by the line search algorithm above
 count = count + 1; % number of Newtons method iterations
else
 % s = 0 and we could not find a feasible newton step, skip this iteration and go to a larger
 count = NT_max_it;
end
if l_v >= nerr
 fprintf('Inner loop Newton method failed to converge for ')
 t
end

Rwcn = zeros(n,n);
for i = 1:n*n
 Rwcn = Rwcn + v(i) * A(:,:,i);
end
for i = 1:K
 Rwcn((i-1) * Ly + 1:i * Ly,(i-1) * Ly + 1:i * Ly) = eye(Ly);
end
bsum = 0.5 * log2(real(det(H * Rxx * H' + Rwcn)/det(Rwcn)));

cvx_wcnoise.m This program requires some explanation of the equivalent reformation the worst-case noise criteria so that CVX’s facilities apply.

The basic WCN problem is (defining $\tilde{H} = H \cdot R_{xx}^{1/2}$ for any square root matrix of R_{xx})

$$P1: \begin{align*} & \text{maximize} \quad \frac{1}{2} \log_2 |I - \tilde{H}^* \cdot \left(R_{nn} + \tilde{H} \cdot \tilde{H}^* \right)^+ \cdot \tilde{H}| \\ & \text{s.t.} \quad R_{nn}(u) = I_{L_y,u}, \forall u \in U \\ & \quad R_{nn} \succeq 0 \end{align*} \quad (G.1)$$

The space of positive semidefinite matrices is $S^{L_y}_+$ and has a matrix $Z \in S^{L_y}_+$ such that $P1$ is equivalent to:

$$P2: \begin{align*} & \text{maximize} \quad \frac{1}{2} \log_2 |I - Z| \\ & \text{s.t.} \quad R_{nn}(u) = I_{L_y,u}, \forall u \in U \\ & \quad R_{nn} \succeq 0 \\ & \quad Z \succeq I - \tilde{H}^* \cdot \left(R_{nn} + \tilde{H} \cdot \tilde{H}^* \right)^+ \cdot \tilde{H}. \end{align*} \quad (G.7)$$

Essentially maximizing $|I - Z|$ is like minimizing Z for a positive semidefinite matrix and the lower bound on Z in the constraints prevents A from going below the value that makes the expression equal to the mutual information’s determinant. The program cvx_wcnoise.m uses the following equivalent formation:

$$P3: \begin{align*} & \text{maximize} \quad \frac{1}{2} \log_2 |I - Z| \\ & \text{s.t.} \quad R_{nn}(u) = I_{L_y,u}, \forall u \in U \\ & \quad \begin{bmatrix} R_{nn} + \tilde{H} \cdot \tilde{H}^* & \tilde{H} \\ \tilde{H}^* & Z \end{bmatrix} \succeq 0 \\ & \quad R_{nn} \succeq 0 \\ & \quad Z \succeq 0. \end{align*} \quad (G.12)$$

The program also constraints the imaginary part of S_{wcn} to be zero to help with numerical issues.

% function [Rnn, sumRatebar, S1, S2, S3, S4] = cvx_wcnoise(Rxx, H, Lyu)
%
%cvx_wcnoise This function computes the worst-case noise for any given input
%autocorrelation Rxx and channel matrix.
% Arguments:
% - Rxx: input autocorrelation, size(Lx, Lx)
% - H: channel response, size (Ly, Lx)
% - Lyu: number of antennas at each user, scalar/vector of length U
% Outputs:
% - Rnn: worst-case noise autocorrelation, with white local noise
% - sumRatebar: maximum sum rate/real-dimension
% - S1 is the lagrange multiplier for the real part of Rnn diagonal elements. Zero values indicate secondary users.
% - S2 is the imaginary part
% - S3 is for the positive semidefinite constraint on Rwcn
% - S4 is for a larger Schur compliment used in the optimization

1018
% function [Rnn, sumRatebar, S1, S2, S3, S4] = cvx_wcnoise(Rxx, H, Lyu)
[Ly,Lx] = size(H);
if length(Lyu) == 1
 U = Ly/Lyu;
 Lyus = ones(1,U)*Lyu;
else
 U = length(Lyu);
 Lyus = Lyu;
end
cum_Lyu = cumsum(Lyus);
cum_Lyu = [0, cum_Lyu(1:end-1)];
us = 1:U;

[Q,D,~]=svd(Rxx);
rD = rank(D);
sqD = sqrt(diag(D));
sqD(rd+1:end) = 0;
Htilde = H*Q*diag(sqD);
cvx_begin sdp quiet
 cvx_solver mosek
 cvx_precision high
 variable Rnn(Ly, Ly) hermitian
 variable Z(Lx, Lx) hermitian semidefinite
 dual variable S1{U}
 dual variable S2{U}
 dual variable S3
 dual variable S4
 maximize log_det(eye(Lx) - Z)
 subject to
 for u = us
 S1{u}: eye(Lyus(u))==real(Rnn(cum_Lyu(u) + (1:Lyus(u)), cum_Lyu(u) + (1:Lyus(u))));
 S2{u}: 0==imag(Rnn(cum_Lyu(u) + (1:Lyus(u)), cum_Lyu(u) + (1:Lyus(u))));
 end
 S3: Rnn == hermitian_semidefinite(Ly);
 S4: [Rnn + Htilde*Htilde’, Htilde; Htilde’, Z] == hermitian_semidefinite(Ly+Lx);
 cvx_end

sumRatebar = -0.5*log2(exp(1))*cvx_optval;

waterfill.m

% function [En] = waterfill(total_en, gn, gap)
% % Waterfill for any set of channel gains, just produces energy
% % Water accepts the channel gains as input, and finds water-fill solution
% for the given (input) total energy, with codes of gap "gap."
% The gap is specified as linear (so not in dB).
% The program uses any gain set and does not compute an SNR, nor does it
% know the original of the gains (so no guard-band penalty is presumed)
% % Inputs
% % total_en is the total energy/symbol for all dimensions
% gn is a vector containing all the gains (energy xfer)
% gap is the LINEAR gap of the code, so gap = 1 means 0 dB
% Output
% En is the set of energies for the original dimensions

function [En] = waterfill(total_en, gn, gap)
 Ntot = numel(gn);
 Ex_bar = total_en/Ntot;
 [gn_sorted, Index] = sort(gn, 'descend'); % sort gain, and get Index
 [~, InvIndex] = sort(Index);
 % Ntot = numel(gn);
 num_zero_gn = length(find(gn_sorted == 0)); % number of zero gain subchannels
 Nstar = Ntot - num_zero_gn;
 % Number of used channels,
 % start from Ntot - (number of zero gain subchannels)
 while(1)
 K = 1/Nstar*(Ntot*Ex_bar + gap*sum(1./gn_sorted(1:Nstar)));
 En_min = K - gap/gn_sorted(Nstar); % En_min occurs in the worst channel
 if (En_min < 0)
 Nstar = Nstar - 1; % If negative En, continue with less channels
 else
 break; % If all En positive, done.
 end
 end
 En = K - gap./gn_sorted(1:Nstar); % Calculate En
 En = [En; zeros(Ntot - Nstar, 1)]; % Pad zeros to revert to unsorted order
 En = En(InvIndex);
end
The `dfecolor` Program

```matlab
function [dfseSNR,w_t,opt_delay]=dfecolorsnr(l,h,nff,nbb,delay,Ex,noise);
function [dfseSNR,w_t,opt_delay]=dfecolorsnr(l,h,nff,nbb,delay,Ex,noise);
% ---------------------------------------------------------------
% [dfseSNR,w_t] = dfecolor(l,p,nff,nbb,delay,Ex,noise);
% %
% % INPUTS
% % l = oversampling factor
% % h = pulse response, oversampled at l (size)
% % nff = number of feed-forward taps
% % nbb = number of feedback taps
% % delay = delay of system <= nff+length of p - 2 - nbb
% % if delay = -1, then choose best delay
% % Ex = average energy of signals
% % noise = noise autocorrelation vector (size l*nff)
% % so white noise is [1 zeros(l*nff-1)]
% % NOTE: noise is assumed to be stationary
% %
% % OUTPUTS
% % dfseSNR = equalizer SNR, unbiased in dB
% % w_t = equalizer coefficients [w -b]
% % opt_delay = optimal delay found if delay =-1 option used.
% % otherwise, returns delay value passed to function
% % created 4/96;
% %---------------------------------------------------------------

size = length(h);
u = ceil(size/l)-1;
h = [h zeros(1,(nu+1)*l-size)];

% error check
if nff<=0
    error('number of feed-forward taps > 0');
end
if delay > (nff+nu-1-nbb)
    error('delay must be <= (nff+(length of p)-2-nbb)');
elseif delay < -1
    error('delay must be >= -1');
elseif delay == -1
    delay = 0:1:nff+nu-1-nbb;
end

%form htmp = [h_0 h_1 ... h_nu] where h_i=[h(i*l) h(i*l-1)... h((i-1)*l+1)
htmp(1:1,l) = [h(1); zeros(l-1,1)];
for i=1:nu
    htmp(1:1,i+1) = conj((h(i*l+1:-1:(i-1)*l+2))');
end

%form matrix H, vector channel matrix
H = zeros(nff*l+nbb,nff+nu);
for i=1:nff,
    H(((i-1)*l+1):(i*1),i:(i+nu)) = htmp;
```
end

%precompute Rn matrix - constant for all delays
Rn = zeros(nff*l+nbb);
Rn(1:nff*l,1:nff*l) = l*toeplitz(noise);

dfseSNR = -100;
H_init = H;

%loop over all possible delays
for d = delay,
 H = H_init;
 H(nff*l+1:nff*l+nbb,d+2:d+1+nbb) = eye(nbb);
 temp= zeros(1,nff+nu);
 temp(d+1)=1;
 %construct matrices
 Ry = Ex*H*H' + Rn;
 Rxy = Ex*temp*H';
 new_w_t = Rxy*inv(Ry);
 sigma_dfse = Ex - real(new_w_t*Rxy');
 new_dfseSNR = 10*log10(Ex/sigma_dfse - 1);
 if new_dfseSNR >= dfseSNR
 w_t = new_w_t;
 dfseSNR = new_dfseSNR;
 opt_delay = d;
 end
end

The dfeRAKE.m program

% function [dfseSNR,W,b]=dfsecolorsnr(l,p,nff,nbb,delay,Ex,noise);
% DFE design program for RAKE receiver
%
% % Inputs
% % l = oversampling factor
% % L = No. of fingers in RAKE
% % p = pulse response matrix, oversampled at l (size),
% % each row corresponding to a diversity path
% % nff = number of feedforward taps for each RAKE finger
% % nbb = number of feedback taps
% % delay = delay of system <= nff+length of p - 2 - nbb
% % if delay = -1, then choose best delay
% % Ex = average energy of signals
% % noise = noise autocorrelation vector (size L x l*nff)
% NOTE: noise is assumed to be stationary, but may be spatially correlated
%
% % outputs:
% % dfseSNR = equalizer SNR, unbiased in dB
% % ---
function [dfseSNR,W,b]=dfsecolorsnr(l,p,nff,nbb,delay,Ex,noise);
siz = size(p,2);
L = size(p,1);
nu = ceil(siz/l)-1;
p = [p zeros(L,(nu+1)*l-siz)];

% error check
if nff<=0
 error('number of feedforward taps must be > 0');
end
if delay > (nff+nu-1-nbb)
 error('delay must be <= (nff+(length of p)-2-nbb)');
end
if delay < -1
 error('delay must be >= 0');
end

%%%
% if length(noise) ~= L*l*nff
% error('Length of noise autocorrelation vector must be L x (l*nff)');
%%%
if size(noise,2) ~= l*nff | size(noise,1) ~= L
 error('Size of noise autocorrelation matrix must be L x l*nff');
end

%%%
% form ptmp = [p_0 p_1 ... p_nu] where p_i=[p(i*l) p(i*l-1)... p((i-1)*l+1)
for m=1:L
 ptmp((m-1)*l+1:m*l,1) = [p(m,1); zeros((l-1),1)];
end
for k=1:nu
 for m=1:L
 ptmp((m-1)*l+1:m*l,k+1) = conj((p(m,k*l+1:-1:(k-1)*l+2))');
 end
end
ptmp;

% form matrix P, vector channel matrix
P = zeros(nff*l*L+nbb,nff+nu);

%%%
% First construct the P matrix as in MMSE-LE
for k=1:nff,
 P(((k-1)*l*L+1):(k*1*L),k:(k+nu)) = ptmp;
end

% Add in part needed for the feedback
P(nff*l*L+1:nff*l*L+nbb,delay+2:delay+1+nbb) = eye(nbb);
temp= zeros(1,nff+nu);
temp(delay+1)=1;

%%%
Rn = zeros(nff*l*L+nbb);

for i = 1:L
 n_t = toeplitz(noise(i,:));
 for j = 1:l:l*nff
 for k = 1:l:l*nff
 Rn((i-1)*l+(j-1)*L+1:i*l+(j-1)*L, (i-1)*l+(k-1)*L+1:i*l+(k-1)*L) = n_t(j:j+l-1,k:k+l-1);
 end
 end
end

%%%

Ex*P*P';
Ry = Ex*P*P' + Rn;
Rxy = Ex*temp*P';
IRy = inv(Ry);
w_t = Rxy*IRy;

% Reshape the w_t matrix into the RAKE filter bank and feedback matrices
ww = reshape(w_t(1:nff*l*L),l*L,nff);
for m = 1:L
 W(m,:) = reshape(ww((m-1)*l+1:m*l,1:nff),1,l*nff);
end
b = w_t(nff*l*L+1:nff*l*L+nbb);
sigma_dfse = Ex - w_t*Rxy';
dfseSNR = 10*log10(Ex/sigma_dfse - 1);
% function [bn, en, Nstar] = waterfill_gn(gn, E_bar, gap, cb)
%
% This function allows the energy budget to be divided by the total number
% of dimensions (unlike waterfill, for which only the total energy is
% specified). THIS FUNCTION ACCEPTS ENERGY/INPUT DIMENSION NOT TOTAL
% ENERGY.
%
% So, for instance, if there are (N + nu) temporal dimensions
% with only N carrying energy, the normalization in construction E_bar
% would divide by N + nu. Instead if spatial with Lx dimensions, E_bar would
% divide by Lx. Basically, the program user of waterfill_gn decides this
% normalization.
%
% INPUT
% gn is the channel gain (a row vector).
% E_bar is the normalized power constraint (E_total / Ntot)
% gap is the gap in dB
% cb = 1 for complex bb and cb=2 for real bb (if not given, assumes cb=2)
%
% OUTPUT
% en is the energy in the nth subchannel; for complex baseband divide by 2
% bn is the bit in the nth subchannel; for complex baseband multiply by 2
% Nstar is the number of energized dimensions
%
% dB into normal scale
function [bn, en, Nstar] = waterfill_gn(gn, E_bar, gap, cb)
gap = 10^(gap/10);
if nargin < 4
 cb = 2;
end
[co1, Ntot] = size(gn);
if col ~= 1
 error = 1
 return;
end
%
% initialization
en = zeros(1, Ntot);
b = zeros(1, Ntot);

% Now do waterfilling
% sort
[gn_sorted, Index] = sort(gn);
% sort gain, and get Index

gn_sorted = flirn(gn_sorted);
% flip left/right to get the largest
Index = flipud(Index);
num_zero_gn = length(find(gn_sorted == 0));
Nstar = Ntot - num_zero_gn;
while(1)
 % The K calculation has been modified in order to accommodate the size of the number
 K = 1/Nstar * (Ntot * E_bar + gap * sum(1./gn_sorted(1:Nstar)));
 En_min = K - gap/gn_sorted(Nstar);
 if (En_min<0)
 Nstar = Nstar - 1;
 else
 break;
end

En = K - gap./gn_sorted(1:Nstar);
Bn = (1/cb) * log2(K * gn_sorted(1:Nstar)/gap);
bn(Index(1:Nstar))=Bn;
en(Index(1:Nstar))=En;

G.4.2 DMTra.m program
% function [gn,En_bar,bn_bar,Nstar,b_bar,SNRdmt]=DMTra(h,NoisePSD,Ex_bar,N,gap)
% CAUTION: the user must know if the input channel h is complex baseband or real baseband in interpreting the outputs, as per comments below
% INPUTS
% h - the complex or real baseband sampled (temporal) pulse response
% NoisePSD and Ex_bar - noise power and energy/dimension or cpx-sample.
% These two parameters need to be consistent in terms of # dimensions.
% N is the DFT size, N>2, and is "Nbar" for complex channels and N for real channels
% The sampling rate (on each of Inphase or Quad for complex) is (N+v)/T
% where 1/T is DMT symbol rate and nu = length(p) - 1
% gap is the gap in dB
% OUTPUTS
% gn is vector of channel gains or magnitude-squared |P|^2 / NoisePSD
% En - vector of energy allocation.
% Per real dimension for real channels;
% Per tone for complex channel.
% For real channels, the upper image frequencies duplicate the lower frequencies.
% For complex channels, each En output is per that tone (= cmplx dim)
% bn_bar is the vector of bit/dim for all subchannels
For complex channels, double bn_bar for bits/tone.
For real channels, the upper image frequencies duplicate lower
frequencies, but bn_bar remains bits per real dimension.
Nstar is the number of used input-size DFT (real or complex) dimensions
(2*Nstar is number of real dimensions for complex chan)
b_bar is the number of bits per (real) dimension
(s0 2*(N+v)*b_bar is total number of bits/symbol for a complex chan)
SNRdmt is the equivalent DMT "geometric" SNR (complex or real) in dB

function [gn,en_bar,bn_bar,Nstar,b_bar,SNRdmt]=DMTra(h,NoisePSD,Ex_bar,N,gap)
Noise_var=NoisePSD;
gap=10^(gap/10);
u=nu=length(h)-1;

% initialization
en=zeros(1,N);
bn=zeros(1,N);
gn=zeros(1,N);
Hn = zeros(1,N);

% subchannel center frequencies
f=0:1/N:1-1/N;

% find Hn vector
for i=1:length(h)
 Hn=Hn+h(i)*exp(j*2*pi*f*(i-1));
end

% find gn vector
gn=abs(Hn).^2/Noise_var;

% Waterfilling for DMT %

%sort
[gn_sorted, Index]=sort(gn); % sort gain, and get Index

 gn_sorted = fliplr(gn_sorted);% flip left/right to get the largest
 % gain in leftside
 Index = fliplr(Index); % also flip index

num_zero_gn = length(find(gn_sorted == 0)); %number of zero-gain subchannels
Nstar=N - num_zero_gn;
% Number of used channels,
% start from N - (number of zero gain subchannels)

while(1)
 K=1/Nstar*(N*Ex_bar+gap*sum(1./gn_sorted(1:Nstar)));
 En_min=K-gap/gn_sorted(Nstar); % En_min occurs in the worst channel
 if (En_min<0)
 Nstar=Nstar-1; % If negative En, continue with less channels
 end
end
else
 break; % If all En positive, done.
end

En=K-gap./gn_sorted(1:Nstar); % Calculate En
Bn=log2(K*gn_sorted(1:Nstar)/gap); % Calculate bn

bn(Index(1:Nstar))=Bn; % return values in original index
en(Index(1:Nstar))=En; % return values in original index

% Since channel is even, need to display % only half of result
en_bar=en(1:N);
bn_bar=0.5*bn(1:N);

% calculate b_bar
b_bar=1/(N+nu)*(0.5*sum(bn));
SNRdmt=10*log10(gap*(2^(2*b_bar)-1));

G.4.3 DMTma.m program

% function [gn,En,bn,b_bar,SNRdmt]=DMTLCra(h,NoisePSD,Ex_bar,N,gap)
% % Levin Campello’s Method with DMT – REAL BASEBAND ONLY, allows PAM on
% % Nyquist and DC and QAM on others. Beta is forced to 1.
% % Inputs
% % h is the pulse response(an nu is set to length(p) - 1
% % NoisePSD is the noise PSD on same scale as Ex_bar
% % Ex_bar is the normalized energy
% % N is the total number of real/complex subchannels, N>2
% % gap is the gap in dB
% % Outputs
% % gn is the vector of channel gains (DC to Nyquist)
% % En is the vector energy distribution from DC to Nyquist
% % bn is the vector bit distribution from DC to Nyquist
% % b_bar is the number of bits per dimension in the DMT symbol
% % The first and last bins are PAM; the rest are QAM.

function [gn,En,bn,b_bar,SNRdmt]=DMTLCra(h,NoisePSD,Ex_bar,N,gap)
 Noise_var=NoisePSD;
 gap=10^(gap/10);
 nu=length(h)-1;

 % initialization
 En=zeros(1,N/2+1);
 bn=zeros(1,N/2+1);
 gn=zeros(1,N/2+1);
 Hn = zeros(1,N/2+1);
 decision_table=zeros(1,N/2+1);
% subchannel center frequencies
f=0:1/N:1/2;

% find Hn vector
for i=1:length(h)
 Hn=Hn+h(i)*exp(j*2*pi*f*(i-1));
end

% find gn vector
gn=abs(Hn).^2/Noise_var;

%debugging purpose
%plot(gn)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Levin Campello Loading %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%initialization
%used energy so far
E_so_far=0;
%decision table - QAM and PAM
decision_table(2:N/2)=2*gap./gn(2:N/2);
% Gap formula incremental energies.
if gn(1) ~= 0
 decision_table(1)=3*gap/gn(1);
else
 decision_table(1)=inf;
end
if gn(N/2+1) ~= 0
 decision_table(N/2+1)=3*gap/gn(N/2+1);
else
 decision_table(N/2+1)=inf;
end

%decision_table: debugging purpose

while(1)
 [y,index]=min(decision_table);
 E_so_far=E_so_far+y;
 if E_so_far > Ex_bar*N
 break;
 else
 En(index)=En(index)+y;
 bn(index)=bn(index)+1;
 end

if (index ==1 | index == N/2+1)

1029
decision_table(index)=4*decision_table(index); else
decision_table(index)=2*decision_table(index);
end

end

% calculate b_bar
b_bar=1/(N+nu)*(sum(bn));
SNRdmt=10*log10(gap*(2^(-2*b_bar)-1));

G.4.4 Levin Campello Loading Programs

Levin Campello LC.m (Section 4.3)

function [gn,En,bn,b_bar,SNRdmt]=DMTLCra(h,NoisePSD,Ex_bar,N,gap)

% Levin Campello’s Method with DMT - REAL BASEBAND ONLY, allows PAM on
% Nyquist and DC and QAM on others. Beta is forced to 1.
% Inputs
% h is the pulse response (an nu is set to length(p) - 1
% NoisePSD is the noise PSD on same scale as Ex_bar
% Ex_bar is the normalized energy
% N is the total number of real/complex subchannels, N>2
% gap is the gap in dB
% Outputs
% gn is the vector of channel gains (DC to Nyquist)
% En is the vector energy distribution from DC to Nyquist
% bn is the vector bit distribution from DC to Nyquist
% b_bar is the number of bits per dimension in the DMT symbol
% The first and last bins are PAM; the rest are QAM.

Noise_var=NoisePSD;
gap=10^(gap/10);
nu=length(h)-1;

% initialization
En=zeros(1,N/2+1);
bn=zeros(1,N/2+1);
gn=zeros(1,N/2+1);
Hn = zeros(1,N/2+1);
decision_table=zeros(1,N/2+1);

% subchannel center frequencies
f=0:1/N:1/2;

% find Hn vector
for i=1:length(h)
Hn=Hn+h(i)*exp(j*2*pi*f*(i-1));
end

% find gn vector
gn=abs(Hn).^2/Noise_var;

% debugging purpose
% plot(gn)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Levin CampelloLoading %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% initialization

% used energy so far
E_so_far=0;
% decision table - QAM and PAM
decision_table(2:N/2)=2*gap./gn(2:N/2);
% Gap formula incremental energies.
if gn(1) ~= 0
 decision_table(1)=3*gap/gn(1);
else
 decision_table(1)=inf;
end
if gn(N/2+1) ~=0
 decision_table(N/2+1)=3*gap/gn(N/2+1);
else
 decision_table(N/2+1)=inf;
end

% decision_table: debugging purpose
while(1)
 [y,index]=min(decision_table);
 E_so_far=E_so_far+y;
 if E_so_far > Ex_bar*N
 break;
 else
 En(index)=En(index)+y;
 bn(index)=bn(index)+1;
 if (index ==1 | index == N/2+1)
 decision_table(index)=4*decision_table(index);
 else
 decision_table(index)=2*decision_table(index);
 end
end
% calculate b_bar
b_bar=1/(N+nu)*sum(bn);
SNRdmt=10*log10(gap*(2^(2*b_bar)-1));

Margin Adaptive Levin Campello MALC.m

function [gn,En,bn,b_bar_check,margin]=MALC(h,SNRmfb,Ex_bar,b_bar,Ntot,gap)
% Margin Adaptive Levin Campello Loading
% h is the pulse response
% SNRmfb is the SNRmfb, so Ex_bar*norm(p)^2/sigma^2, in dB
% Ex_bar is the normalized energy
% Ntot is the total number of real subchannels, Ntot>2
% Any guard periods must be addressed by program user
% gap is the gap in dB
% b_bar is the bit rate
% gn is channel gain
% En is the energy in the nth subchannel (PAM or QAM)
% bn is the bit in the nth subchannel (PAM or QAM)
% b_bar_check is the bit rate for checking - this should be equal to b_bar
% margin is the margin (in dB)
% The first bin and the last bin is PAM, the rest of them are QAM.

Noise_var=Ex_bar*(norm(h)^2)/(10^(SNRmfb/10));
gap=10^(gap/10);

% initialization
En=zeros(1,Ntot/2+1);
bn=zeros(1,Ntot/2+1);
gn=zeros(1,Ntot/2+1);
Hn = zeros(1,Ntot/2+1);
decision_table=zeros(1,Ntot/2+1);

% subchannel center frequencies
f=0:1/Ntot:1/2;

% find Hn vector
for i=1:length(h)
 Hn=Hn+h(i)*exp(j*2*pi*f*(i-1));
 % This value will be different depending if p represents
 % p(1) + p(2)*D^-1 + or p(1) + p(2)*D^+1.....,
 % but we’ll get same gn, thus same waterfilling result.
 % (Note that both have the same magnitude response!)
end

% find gn vector
gn = abs(Hn).^2 / Noise_var;

% debugging purpose
plot(gn)

% Now do LC %

% initialization

% used energy so far
E_so_far = 0;

% decision table - QAM and PAM
for n = 2:Ntot/2
 if gn(n) ~= 0
 decision_table(n) = 2*gap./gn(n);
 else
 decision_table(n) = inf;
 end
end

if gn(1) ~= 0
 decision_table(1) = 3*gap/gn(1);
else
 decision_table(1) = inf;
end

if gn(Ntot/2+1) ~= 0
 decision_table(Ntot/2+1) = 3*gap/gn(Ntot/2+1);
else
 decision_table(Ntot/2+1) = inf;
end

% decision_table: debugging purpose

while(1)
 [y, index] = min(decision_table);
 E_so_far = E_so_far + y;

 if sum(bn) >= Ntot*b_bar
 break;
 else

 En(index) = En(index) + y;
 bn(index) = bn(index) + 1;

 if (index == 1 | index == Ntot/2+1)
 decision_table(index) = 4*decision_table(index);
 else
 decision_table(index) = 2*decision_table(index);
 end

end
end

% calculate b_bar
b_bar_check=1/Ntot*(sum(bn));

% check margin
margin=10*log10(Ntot*Ex_bar/sum(En));

Levin Campello Rate Adaptive DMT Loading

% function [gn,En,bn,b_bar,SNRdmt]=DMTLCra(P,NoisePSD,Ex_bar,N,gap)
% % Levin Campello’s Method with DMT - REAL BASEBAND ONLY, allows PAM on
% % Nyquist and DC and QAM on others. Beta is forced to 1.
% %
% % Inputs
% % p is the pulse response(an nu is set to length(p) - 1
% % NoisePSD is the noise PSD on same scale as Ex_bar
% % Ex_bar is the normalized energy
% % N is the total number of real/complex subchannels, N>2
% % gap is the gap in dB
% %
% % Outputs
% % gn is the vector of channel gains (DC to Nyquist)
% % En is the vector energy distribution from DC to Nyquist
% % bn is the vector bit distribution from DC to Nyquist
% % b_bar is the number of bits per dimension in the DMT symbol
% %
% % The first and last bins are PAM; the rest are QAM.

function [gn,En,bn,b_bar,SNRdmt]=DMTLCra(p,NoisePSD,Ex_bar,N,gap)
Noise_var=NoisePSD;
gap=10^(gap/10);
nu=length(p)-1;

% initialization
En=zeros(1,N/2+1);
bn=zeros(1,N/2+1);
gn=zeros(1,N/2+1);
Hn = zeros(1,N/2+1);
decision_table=zeros(1,N/2+1);

% subchannel center frequencies
f=0:1/N:1/2;

% find Hn vector
for i=1:length(p)
 Hn=Hn+p(i)*exp(j*2*pi*f(i-1));
end

% find gn vector

1034
gn=abs(Hn).^2/Noise_var;
%
% debugging purpose
% plot(gn)

%%%%%%%%%%%%%%%%%%%%%%%
% Levin Campello Loading %
%%%%%%%%%%%%%%%%%%%%%%%

% initialization
% used energy so far
E_so_far=0;
% decision table - QAM and PAM
decision_table(2:N/2)=2*gap./gn(2:N/2);
% Gap formula incremental energies.
if gn(1) ~= 0
 decision_table(1)=3*gap/gn(1);
else
 decision_table(1)=inf;
end
if gn(N/2+1) ~=0
 decision_table(N/2+1)=3*gap/gn(N/2+1);
else
 decision_table(N/2+1)=inf;
end
% decision_table: debugging purpose
while(1)
 [y,index]=min(decision_table);
 E_so_far=E_so_far+y;
 if E_so_far > Ex_bar*N
 break;
 else
 En(index)=En(index)+y;
 bn(index)=bn(index)+1;
 if (index ==1 | index == N/2+1)
 decision_table(index)=4*decision_table(index);
 else
 decision_table(index)=2*decision_table(index);
 end
 end
end
% calculate b_bar

% calculate b_bar

1035
b_bar = 1/(N+nu)*(sum(bn));
SNRdmt = 10*log10(gap*(2^(2*b_bar)-1));

G.4.5 TEQ Program

% [w, b, SNRmfb, SNRdmt_teq, SNRdmt, Nstar] = teq(h, L, nu, N, noise, Ex_bar, gap, cb)
% programmed by J.M. Cioffi
% Calculates a time domain equalizer and calculates the SNR for an infinite
% length DMT system to compare
%
% Inputs
% -------
% h: channel impulse response
% (FIR channels: p = 1+0.5D+2.3D^2->p=[1 0.5 2.3]
% IIR channels: p=1/(2.4-0.5D)-> p=[2.4 -0.5])
% L: number of equalizer taps (should be < N/2)
% nu: target channel pulse response length < size(h)-1
% N: FFT size for eventual computation of SNRdmt_teq
% noise: noise variance per sample
% Ex_bar: Input energy per sample
% cb = 2 for real, 1 for complex
%
% Outputs
% -------
% w: TEQ equalizer
% b: MMSE target channel shaping function (length=nu+1)
% SNRmfb: matched filter bound SNR
% SNRdmt_teq: DMT SNR for this equalized channel for N input (dB scale)
% SNRdmt: DMT SNR for the unequalized first nu+1 samples of the channel
% Nbig=10000 (dB scale)
% Nopt: Number of used dimensions
%
% Remarks
% -------
% calls "DMTra.m" and "waterfill_gn" functions
%
% ***

function [w, b, SNRmfb, SNRdmt_teq, SNRdmt, Nopt] = teq(h, L, nu, N, noise, Ex_bar, gap, cb)
% initialization
norm_h = norm(h);
[~, size_h] = size(h);
if nu > size_h - 2
 'error - nu < size of h - 1'
 return
elseif L > N/2-1
 'error L > N/2-1'
else
 C = [h(1); zeros(L-1,1)];
 R = [h, zeros(1, L-1)];
 H = toeplitz(C, R);
btemp=zeros(L,nu+1);
wtemp=zeros(L,L);
 mmsetemp=zeros(1,L);

% find the MMSE's for all delays
for delay = 1:L
 ryy=Ex_bar*H*H'+noise*eye(L,L);
 rxy=Ex_bar*[zeros(nu+1,delay) eye(nu+1) zeros(nu+1,L+size_h-2-nu-delay)]*H';
 rle=eye(nu+1)*Ex_bar-rxy*inv(ryy)*rxy';
 [v d]=eig(rle);
 [mmsetemp(delay) , index] = min(diag(d));
 btemp(delay,:)=norm_h*v(:,index)';
 wtemp(delay,:)=btemp(delay,:)*rxy*inv(ryy);
 mmsetemp(delay)=d(index,index)*norm_h^2;
end

% extract TEQ for this best delay
[mmse_opt , index_opt] = min(mmsetemp);
b=btemp(index_opt,:);
w=wtemp(index_opt,:);
eqh=conv(w,h);

% compute performance indications
norm_c=norm(eqh(index_opt+1:index_opt+nu+1));
error=[eqh(1:index_opt),zeros(1,nu+1),eqh(index_opt+nu+2:end)];
Re=conv(error,conj(error(end:-1:1))); isi_energy=norm(error)^2;
noise_energy=norm(w)^2*noise;
Ru=noise*conv(w,conj(w(end:-1:1)));
distortion=isi_energy*Ex_bar+noise_energy;
Rb=conv(b,conj(b(end:-1:1)));

SNRmfb=norm_h^2*Ex_bar/noise;
SNRmfb=10*log10(SNRmfb);
ReF=abs(fft(Re,N));
RwF=abs(fft(Ru,N));
RbF=abs(fft(Rb,N));
gn=RbF./(ReF+RwF);
Nbig=10000;
fifixac=(Nbig/(Nbig + nu))*((N+nu)/N);
[bn, en, Nopt] = waterfill_gn(gn,Ex_bar, gap, cb); bsumbar=sum(bn)/(N+nu);
SNRdmt_teq=10*log10(2^(cb*bsumbar)-1);

%SNRdmt for an infinite length DMT without the equalizer but taking the %first nu+1 samples of the channel
[gn,en_bar,bn_bar,Nstar,b_bar,SNRdmt]=DMTra(h, noise, fixfac*Ex_bar,10000,gap);

end
% function [Ct, Ot, Ruutt] = fixmod(H_NW, Ruu, C, tol)
%--
% fixmod removes the part of x that lies in H_NW's nullspace
% x->xt, u->ut
% Inputs: H_NW, Ruu, C, tol
% H_NW: Noise-whitened channel
% Ruu: Autocorrelation matrix of u
% C: discrete modulator matrix
% tol: used in licols to determine rank of matrix Ctemp
%
% Outputs: Ct, Ot, Ruutt
% Ct: new discrete modulator with components without H_NW's nullspace
% components
% Ot: Projection matrix of C2 onto C
% Ruutt: new autocorrelation matrix for u
%
% This program calls licols
%--
function [Ct, Ot, Ruutt] = eliminate_x_nullspace(H_NW, Ruu, C, tol)

if nargin < 4
 tol = 1e-10;
end

% Step 1
[F, Lambda, M] = svd(H_NW);
% Step 2
Rho_H = rank(H_NW);
% Grabbing Rho_H vectors from M to form P_m
P_m = M(:, 1:Rho_H) * M(:, 1:Rho_H)';
% Step 3
Ctemp = P_m * C;
% Getting Ct from Ctemp
[Ct, Ct_indices] = licols(Ctemp, tol);

% Getting the indices in C2 (This can easily be O(n) instead of O(n^2)
C2_indices = 1:size(Ctemp, 2);
for Ct_index = Ct_indices
 C2_indices(C2_indices==Ct_index) = 0;
end

% Computing C2, Ot, and Ruutt
C2_indices = C2_indices(C2_indices~=0);
C2 = Ctemp(:, C2_indices);

% Step 4
Ot = inv(Ct' * Ct) * (Ct' * C2);
licols.m : The program lichols.m is a program from former student Ethan Liang that computes linearly independent columns of a matrix.

function [Xsub,idx]=licols(X,tol,mode)
% function [Xsub,idx]=licols(X,tol,mode)
% Matt J (2021). Extract linearly independent subset of matrix columns
% Significant modifications by Ethan Liang
% Extract a linearly independent set of columns of a given matrix X
% [Xsub,idx]=licols(X)
% Inputs:
% X: The given input matrix
% tol: A rank estimation tolerance. Default=1e-10
% mode: Rule for choice of columns
% 'desc': choose columns based on descending values of R
% 'LR': choose columns from left to right
% out:
% Xsub: The extracted columns of X
% idx: The indices (into X) of the extracted columns
if ~nnz(X) %X has no non-zeros and hence no independent columns
 Xsub=[]; idx=[];
 return
end
if (nargin<3)
 mode = 'LR';
 if (nargin<2)
 tol=1e-10;
 end
end
if strcmpi(mode, 'desc')
 [Q, R, E] = qr(X,'vector');
 if ~isvector(R)
 diagr = abs(diag(R));
 end
end
else
 diagr = abs(R(1));
end

%Rank estimation
r = find(diagr >= tol*diagr(1), 1, 'last'); %rank estimation
idx=sort(E(1:r));
Xsub=X(:,idx);
elseif (strcmpi(mode, 'LR'))
 % Although the above code works, this selection prioritizes
 % selecting columns from left to right, which is more commonly
 % used in the examples in the textbook.
 [Q, R] = qr(X);
 if ~isvector(R)
 diagr = abs(diag(R));
 else
 diagr = abs(R(1));
 end
 idz = 1;
 idx = [];
 for idy = 1:size(X, 2)
 if (abs(R(idy, idz)) >= tol*diagr(1))
 idx = [idx, idy];
 idz = idz + 1;
 end
 end
 Xsub=X(:,idx);
else
 error("Incorrect mode selected: " + string(mode));
end
end

fixin.m

% function [At, OA, Ruupp] = fixin(Ruutt, Ct, tol)
%
%--
% xt->xp, ut->up (Reducing ranking of ut->up, possible b/c Rxxtt singlar)
% Inputs: Ruutt, Ct, tol
% Outputs: At, OA, Ruupp
%
% Ruutt: autocorrelation matrix of ut
% Ct: "nullspace of H"-adjusted discrete modulator matrix
% tol: used in licols to determine rank of matrix Ctemp
% At: "nullspace of H & Rxx singularity"-adjusted discrete modulator matrix
% OA: projection matrix of A2 onto A
% Ruupp: autocorrelation matrix of up
%--

function [At, OA, Ruupp] = fixin(Ruutt, Ct, tol)
if nargin < 3
tol = 1e-10;
end

% Step 1
Rxxtt = Ct * Ruutt * Ct';
% This is necessary to get V orthonormal. eig in MATLAB only produces
% orthonormal V when Rxxtt is known to be Hermitian. Without following
% command, MATLAB doesn't recognize Rxxtt as Hermitian.
Rxxtt = 0.5 * (Rxxtt + Rxxtt');
[V, D] = eig(Rxxtt);

% Step 2
eig_indices = abs(diag(D)) > tol;
Pq = V(:, eig_indices) * V(:, eig_indices)';

% Step 3
Atemp = Pq * Ct;
[At, A_indices] = licols(Atemp, tol);

% Getting the indices in A2 (This can easily be O(n) instead of O(n^2)
A2_indices = 1:size(Atemp, 2);
for A_index = A_indices
 A2_indices(A2_indices==A_index) = 0;
end

% Computing A2, OA, and Ruutt
A2_indices = A2_indices(A2_indices~=0);
A2 = Atemp(:, A2_indices);

% Step 4
OA = inv(At' * At) * (At' * A2);

% Step 5
R11tt = Ruutt(A_indices, A_indices);
R12tt = Ruutt(A_indices, A2_indices);
R21tt = Ruutt(A2_indices, A_indices);
R22tt = Ruutt(A2_indices, A2_indices);

% Step 8
Ruupp = R11tt + OA * R21tt + R12tt * OA' + OA * R22tt * OA';
end

computeGDFE Program: This program was originally supplied by Ethan Liang, and then signifi-
cantly modified by the instructor afterward.

% function [snrGDFEu, GU, WU, S0, MSWMFU, b, bbar, snrGLEu] = computeGDFE(H, A, cb, Lx)
%---
% Inputs
% H: noise-whitened channel, Ly x Lx (one tone)
% A: any Lx x Lx square root of input autocorrelation matrix
% This can be generalized non-square square-root
% cb: =1 if H is complex baseband; =2 if H is real baseband
\% Lx: optional input of Lx when not equal to size of A
\% this is used to compute bits/dimension properly
\%
\% Outputs
\% GU: unbiased feedback matrix
\% WU: unbiased feedforward linear equalizer
\% S0: sub-channel channel gains
\% MSWMFU: unbiased mean-squared whitened matched filter
\% b: bit distribution vector
\% bbar: number of bits/dimension (real if cb=2, complex if cb=1)
\% snrGDFEu - unbiased SNR in dB; assumes size of R_sqrt input
\% the user should recompute SNR if there is a cyclic prefix
\% bbar = bit distribution over symbol dimensions (real cb=2; cplx cb=1)
\% bbar is sum(b)/Lx so total bits/(real cb=2; cplx cb=1) dimension
\% snrGLEu is the linear GLE SNR
\%
\% Note: The R_sqrt need not be square non-singular, as long as
\% R_sqrt*R_sqrt' = input autocorrelation matrix Rxx, but SNRLEu is off
\% Thanks to Ethan Liang, corrected/updated J. Cioffi
\%
%--
function [snrGDFEu, GU, WU, S0, MSWMFU, b , bbar, snrGLEu] = computeGDFE(H, A, cb, Lx)
%--
% Computing Ht: Ht = H*A
Ht = H*A;
%--
if (nargin<4)
 [~, Lx, ~] = size(A);
end
[Ly,~,~]=size(H);

% Computing Rf, Rbinv, Gbar
Rf = Ht' * Ht;
Rbinv = Rf + eye(size(Rf));
Gbar = chol(Rbinv);
Ng=size(Gbar);
Ng=Ng(1);

% Computing the matrices of interest
G = inv(diag(diag(Gbar)))*Gbar;
S0 = diag(diag(Gbar))*diag(diag(Gbar));
% W = inv(S0)*inv(G');
GU = eye(size(G)) + S0*pinv(S0-eye(size(G)))*(G-eye(size(G)));
WU = pinv(S0-eye(size(G)))*inv(G');
MSWMFU = WU*Ht';
% Section to handle numerical is with large-dim determinants/geo-ave
if Ng < 10
 snrGDFEu = 10*log10(det(S0)^n/(Lx)^-1);
else
 snrGDFE=0;
 for n=1:Ng
 snrGDFE = snrGDFE + (1/(Lx))*log10(S0(n,n));
 end
end

1042
end
snrGDFEu=10*log10(10^((0.1*snrGDFE)-1));
end
b=(1/cb)*log2(diag(S0));
bbar=(1/Lx)*sum(b);
% This is linear equalizer computation
sGLE0=inv(diag(diag(inv(Rbinv))));
snrGLEu=10*log10(det(sGLE0)^((1/(Lx))-1));

G.5.2 From Subsection 5.4 - MU MAC programs

SWF.m program

% function [Rxx, bsum, bsum_lin] = SWF(Eu, H, Lxu, Rnn, cb)
% % Simultaneous water-filling MAC max rate sum (linear and nonlinear GDFE)
% The input is space-time domain h, and the user can specify a temporal
% block symbol size N (essentially an FFT size).
% % Inputs:
% % Eu U x 1 energy/SAMPLE vector. Single scalar equal energy all users
% % any (N*N+nu) scaling should occur BEFORE input to this program.
% % H The FREQUENCY-DOMAIN Ly x sum(Lx(u)) x N MIMO channel for all users.
% % N is determined from size(H) where N = # used tones
% % Lxu 1xU vector of each user’s number of antennas
% % Rnn The Ly x Ly x N noise-autocorrelation tensor (last index is per tone)
% % cb cb = 1 for complex, cb=2 for real baseband
% % cb=2 corresponds to a frequency range at an sampling rate 1/T’ of
% % [0, 1/2T’] while with cb=1, it is [0, 1/T’]. The Rnn entered for
% % these two situations may differ, depending on how H is computed.
% % Outputs:
% % Rxx A block-diagonal psd matrix with the input autocorrelation for each
% % user on each tone. Rxx has size (sum(Lx(u)) x sum(Lx(u)) x N .
% % sum trace(Rxx) over tones and spatial dimensions equal the Eu
% % bsum the maximum rate sum.
% % bsum bsum_lin - the maximum sum rate with a linear receiver
% % b is an internal convergence sum rate value, not output
% % This program significantly modifies one originally supplied by student
% % Chris Baca

function [Rxx, bsum, bsum_lin, Bun, Eun] = SWF(Eu, H, Lxu, Rnn, cb)
U = numel(Lxu);
[Ly, Lx_sum, N] = size(H);

if numel(Eu) == 1
 Eu = Eu*ones(U);
end

i = 0;
for n=1:N
 Rxx(:,:,n) = diag(zeros(Lx_sum, N));
 H(:,:,n)=inv(sqrtm(Rnn(:,:,n)))*H(:,:,n);
end

1043
b = zeros(U, 1);
bsum = sum(b);

cum_index = 1;
user_ind(1) = 1;
for u = 2:U
 cum_index = cum_index + Lx(u);
 user_ind(u) = cum_index;
end

for u = 1:U
 st = user_ind(u);
 if u < U
 en = user_ind(u+1)-1;
 else
 en = Lx_sum;
 end

 for n = 1:N
 Rxx(st:en, st:en, n) = Eu(u)*eye(en-st+1);
 end
end

while 1
 bsum_prev = bsum;
 b_prev = b;
 for u = 1:U
 if new user
 st = user_ind(u);
 if u < U
 en = user_ind(u+1)-1;
 else
 en = Lx_sum;
 end
 M_u = zeros(en-st+1, en-st+1, N);
 g_u = [];
 Rnn_un = zeros(Ly, Ly, N);
 for n = 1:N
 if new tone
 Rnn_un(:,:,n) = eye(Ly);
 for v = 1:U
 if v ~= u
 st = user_ind(v);
 if v < U
 en = user_ind(v+1)-1;
 else
 en = Lx_sum;
 end
 end

end

1044
\[Hvn = H(:, st:en, n); \]
\[Rxxvn = Rxx(st:en, st:en, n); \]
\[\text{Rnn}_un(:,:,n) = \text{Rnn}_un(:,:,n) + Hvn \cdot Rxxvn \cdot Hvn'; \]
\end{verbatim}
\begin{verbatim}
end
end

\text{st} = \text{user_ind}(u);

if \text{u} < \text{U}
 \text{en} = \text{user_ind}(u+1)-1;
else
 \text{en} = \text{Lx_sum};
end

\text{Hun} = H(:, \text{st}:\text{en}, n);
\text{Hun_til} = \text{sqrtm}(\text{inv}(\text{Rnn}_un(:,:,n))) \cdot \text{Hun};

[\text{F}, \text{D}, \text{M}_n] = \text{svd}(\text{Hun_til});
\text{s} = \text{svd}(\text{Hun_til});

\text{M}_u(:,:,n) = \text{M}_n;
\text{g}_u(:,:,n) = \text{s}.'^2;
\end{verbatim}
\begin{verbatim}
end
\text{g_flat} = \text{reshape}(\text{g}_u, [1, \text{numel}(\text{g}_u)]);
\%
\[[\text{g_sort}, \text{ind}] = \text{sort}(\text{g_flat}, \text{'descend'}); \]

[B(u,:), E(u,:), L_star] = \text{waterfill_gn}(\text{g_flat}, \text{Eu}(u), 0, cb);

\text{L} = \text{numel}(\text{g_flat});
\%
\text{Etot} = \text{N} \cdot \text{Eu}(u);
\%
\text{j} = \text{L};
\%
\text{e} = \text{zeros}(1, \text{L});
\%
\text{size}(\text{E})
\%
\text{e}(1:\text{L_star})=\text{E};
\%
\text{e} = \text{reshape}(\text{E}(u,:), [\text{en}-\text{st}+1, \text{N}]);
\text{b}=\text{sum}(\text{B}(u,:));

\text{for} \text{n} = 1:\text{N}
 \text{Rxx}(\text{st}:\text{en}, \text{st}:\text{en}, \text{n}) = \text{M}_u(:,:,n) \cdot \text{diag}(\text{e}(:,n)) \cdot \text{M}_u(:,:,n)';
\end{verbatim}
\begin{verbatim}
end
\text{bsum} = 0;
\text{for} \text{n}=1:\text{N}
 \text{bsum} = \text{bsum} + (1/cb) \cdot \log2(\text{det}(\text{eye}(\text{Ly})+\text{H}(:,:,n) \cdot \text{Rxx}(:,:,n) \cdot \text{H}(:,:,n)'));
\end{verbatim}
\begin{verbatim}
\text{end}
\text{bsum} = \text{real}(\text{bsum});
\text{i} = \text{i}+1;
\end{verbatim}
if abs(bsum-bsum_prev) <= 1e-6
 if norm(b-b_prev) <= 0
 break
 end
end
if i>1000
 i
 break
end
end

% b = b(:,1);
%Hcell = mat2cell(H,Ly,Lx_sum,ones(1,N));
%Hexpand = [blkdiag(Hcell{1,1,:})]
%Rcell = mat2cell(Rxx,Ly,Lx_sum,ones(1,N));
%Rxxexpand = [blkdiag(Rcell{1,1,:})]
%bsum = log2(det(eye(Lx_sum*N)+Hexpand*Rxxexpand*Hexpand'));
%bsum = log2(det(eye(Ly*N)+Hexpand*Rxxexpand*Hexpand'));
%bsum=0;
%for n=1:N
 % bsum=bsum+(1/cb)*log2(det(eye(Ly)+H(:,:,n)*Rxx(:,:,n)*H(:,:,n)'));
%end
%bsum=real(bsum);
bs=zeros(1,U);
bsum_lin=0;
for u=1:U
 indices=user_ind(u):user_ind(u)+Lx(u)-1;
 for n=1:N
 bs(u)=bs(u)+(1/cb)*(log2(det(eye(Ly)+H(:,:,n)*Rxx(:,:,n)*H(:,:,n)')) - log2(det(eye(Ly)+H(:,:,n)*Rxx(:,:,n)*H(:,:,n)'- H(:,indices,n)*Rxx(indices,...
 indices,n)*H(:,indices,n)')));
 end
 bsum_lin=bsum_lin+real(bs(u));
end

maxRMAC_cvx.m
% function [Eun, w, bun] = maxRMAC_cvx(H, Eu, theta, cb)
%
% maxRMAC_cvx Maximizes weighted rate sum subject to energy constraint, each
% user has ONLY ONE transmit antenna. It uses CVX and mosek. It only works
% for Lx=1 on all users.
%
% INPUTS:
% H(:,u,n): Ly x U x N channel matrix. Ly = number of receiver antennas,
% U = number of users and N = number of tones.
%
% If the channel is real-bbd (cb=2), maxPMAC_cvx realizes user data rates
% over all the tones (or equivalently positive and negative
% freqs). This means the input H must be conjugate symmetric H_n =
% H_{(N-n)}^*.*. The program will reduce N by 2 and focus energy on the
% lower half of frequencies. Thus N>1 must be even for real channels,
% with a special exception made for N=1.
% By contrast if cb=1 (cplx bbd), maxRMAC_cvx need not have a conjugate
% symmetric H and N is not reduced.
%
% Eu: 1 x U Energy constraint for each user as total energy per symbol.
% For N=1 channel, the program adjusts energy to be per complex (cb=1)
% symbol at the beginning and then restores at end. cb=2 has no
% change. So for N=1, the input Eu should be u’s energy/symbol.
%
% theta: weight on each user’s rate, length-U vector.
%
% cb: =1 if H is complex baseband, and cb=2 if H is real baseband.
%
% OUTPUTS:
% Eun: U x N energy distribution. Eun(u,n) is user u’s energy allocation
% on tone n.
% w: U x 1 Lagrangian multiplier w.r.t. energy constraints
% bun: U by N bit distributions for all users.
% ***
function [Eun, w, bun] = maxRMAC_cvx(H, Eu, theta,cb)
[Ly, U, N] = size(H);
if N>1
 if cb==2
 H=H(:,:,1:N/2);
 N=N/2;
 end
else
 Eu=Eu/(3-cb);
end
Eu = reshape(Eu,[],1);
theta = reshape(theta,[],1);
[stheta, idx] = sort(theta, 'descend');
delta = -diff([stheta;0]);
sh = H(:,idx, :);
Hs = zeros(Ly, Ly, U, N);
for n=1:N
 for u=1:U
 Hs(:,:,u,n) = sh(:,u,n)*sh(:,u,n)';
 end
end
cvx_begin quiet
cvx_solver mosek
 variable Eun(U,N) nonnegative
dual variable w
 expression r(U,N)
 S = cumsum(Hs.*repelem(reshape(Eun,1,1,U,N),Ly,Ly,1,1), 3);
 for u = 1:U
 for n = 1:N
 r(u,n) = log_det(S(:,:,u,n) + eye(Ly));
 end
 end
 maximize sum(delta'*r)
 subject to
 w: sum(Eun,2)<=Eu;
end
cvx_end

S = cumsum(Hs.*repelem(reshape(Eun,1,1,U,N),Ly,Ly,1,1), 3) + eye(Ly);
cumrate = zeros(U,N);
for u = 1:U
 for n = 1:N
 cumrate(u,n) = (1/cb)*real(log2(det(S(:,:,u,n))));
 end
end
bun(idx,:) = diff([zeros(1,N); cumrate]);
w(idx)=w;
if N == 1
 Eun=(3-cb)*Eun;
end
end

maxRMACMIMO.m

% function [Rxxs, Eun, w, bun] = maxRMACMIMO(H, Lxu, Eu, theta , cb)
% % maxRMAC_vector_cvx Maximize weighted rate sum subject to energy constraint. This uses cvx and mosek.
% % INPUTS:
% % H(:,u,n): Ly x U x N channel matrix. Ly = number of receiver antennas, U = number of users and N = number of tones.
% % If the channel is real-bbd (cb=2), maxPMAC_cvx realizes user data rates over all the tones (or equivalently positive and negative freqs). This means the input H must be conjugate symmetric H_n = H_{N-n}^*. The program will reduce N by 2 and focus energy on the lower half of frequencies. Thus N>1 must be even for real channels, with a special exception made for N=1.
% % By constast if cb=1 (cplx bbd), maxRMAC_cvx need not have a conjugate symmetric H and N is not reduced.
% % Eu: 1 x U Energy constraint for each user as total energy per symbol.
% % For N=1 channel, the program adjusts energy to be per complex (cb=1) symbol at the beginning and then restores at end. cb=2 has no change. So for N=1, the input Eu should be u's energy/symbol.
% % theta: weight on each user's rate, length-U vector.
% % cb: =1 if H is complex baseband, and cb=2 if H is real baseband.
% % OUTPUTS:
% % Rxxs: U-by-N cell array containing Rxx(u,n)'s if Lxu is a length-U vector; or Lxu-by-Lxu-by-U-by-N tensor if Lxu is a scalar.
% % Eun: U x N energy distribution. Eun(u,n) is user u's energy allocation on tone n.
% % w: U x 1 Lagrangian multiplier w.r.t. energy constraints
% % bun: U by N bit distributions for all users.
%
function \[Rxxs, Eun, w, bun\] = maxRMACMIMO(H, Lxu, Eu, theta, cb)

UNIFORM_FLAG = 0;
[Ly, ~, N] = size(H);
if N>1
 if cb==2
 H=H(:,:,1:N/2);
 N=N/2;
 end
else
 Eu=Eu/(3-cb);
 H = reshape(H,Ly,[],1);
end
Eu = reshape(Eu,[],1);
theta = reshape(theta,[],1);
[stheta, idx] = sort(theta, 'descend');
delta = -diff([stheta;0]);
U = length(Eu);
if length(Lxu) == 1
 Lxu = ones(1,U)*Lxu;
 UNIFORM_FLAG = 1;
end
Lxu_max = max(Lxu);
index_end = cumsum(Lxu);
index_start = [1,index_end(1:end-1)+1];
Lxu = Lxu(idx);
index_start = index_start(idx);
index_end = index_end(idx);
cvx_begin quiet
cvx_solver mosek
 variable rxxs(Lxu_max, Lxu_max, U, N) hermitian
dual variable w
 expressions r(U,N) S(Ly, Ly) Eun(U,N)
 for n = 1:N
 S=eye(Ly);
 for u = 1:U
 S = S + H(:,:,index_start(u):index_end(u),n)...
 *rxxs(1:Lxu(u),1:Lxu(u),u,n)...
 *H(:,:,index_start(u):index_end(u),n)';
 r(u,n) = log_det(S);
 Eun(u,n) = trace(rxxs(1:Lxu(u),1:Lxu(u),u,n));
 end
 end
maximize sum(delta'*r)
subject to
 w: sum(Eun,2)<=Eu;
 for u = 1:U
 for n=1:N
 rxxs(1:Lxu(u),1:Lxu(u),u,n)==hermitian_semidefinite(Lxu(u));
 end
 end
end
end}

1049
cumrate = zeros(U,N);
for n = 1:N
 S=eye(Ly);
 for u = 1:U
 S = S + H(:,index_start(u):index_end(u),n)...
 *rxxs(1:Lxu(u),1:Lxu(u),u,n)...
 *H(:,index_start(u):index_end(u),n)';
 cumrate(u,n) = (1/cb)*real(log2(det(S)));
 end
end
bun(idx,:) = diff([zeros(1,N); cumrate]);
w(idx)=w;
if N == 1
 Eun=(3-cb)*Eun;
 rxxs=(3-cb)*rxxs;
end
if UNIFORM_FLAG
 Rxxs(:,:,idx,1:N) = rxxs;
 for u = 1:U
 for n = 1:N
 Eun(idx(u),n) = trace(Rxxs(:,:,u,n));
 end
 end
else
 Rxxs = cell(U,N);
 for u = 1:U
 for n = 1:N
 Rxxs{idx(u),n} = rxxs(1:Lxu(u),1:Lxu(u),u,n);
 Eun(idx(u),n) = trace(Rxxs{idx(u),n});
 end
 end
end
end

maxRMAC.m This program works with Lx,u = 1 and no CVX use.

% function [Eun, w, bun] = maxRMAC(H, Eu, theta, cb)
% maxRMAC Maximizes weighted rate sum subject to energy constraint, each
% user has ONLY ONE transmit antenna (Lx=1). It does not use CVX.
% INPUTS:
% H(:,u,n): Ly x U x N channel matrix. Ly = number of receiver antennas,
% U = number of users and N = number of tones.
% If the channel is real-bbd (cb=2), maxPMAC_cvx realizes user data rates
% over all the tones (or equivalently positive and negative
% freqs). This means the input H must be conjugate symmetric H_n =
% H_-(N-n)/*. The program will reduce N by 2 and focus energy on the
% lower half of frequencies. Thus N>1 must be even for real channels,
% with a special exception made for N=1.
By contrast if cb=1 (cplx bbd), maxRMAC_cvx need not have a conjugate symmetric H and N is not reduced.

Eu: 1 x U Energy constraint for each user as total energy per symbol.
For N=1 channel, the program adjusts energy to be per complex (cb=1) symbol at the beginning and then restores at end. cb=2 has no change. So for N=1, the input Eu should be u’s energy/symbol.

theta: weight on each user’s rate, length-U vector.

cb: =1 if H is complex baseband, and cb=2 if H is real baseband.

% OUTPUTS:
% Eun: U x N energy distribution. Eun(u,n) is user u’s energy allocation on tone n.
% w: U x 1 Lagrangian multiplier w.r.t. energy constraints
% bun: U by N bit distributions for all users.

function [Eun, w, bun] = maxRMAC(H, Eu, theta, cb)

err = 1e-9; % error tolerance
count = 0;
[Ly, U, N] = size(H);
if N>1
 if cb==2
 H=H(:,:,1:N/2);
 N=N/2;
 end
else
 Eu=Eu/(3-cb);
end
Eu = reshape(Eu,[],1);
theta = reshape(theta,[],1);

[A, g] = startEllipseRate(H, Eu, theta); % starting ellipsoid
w = g;

while 1 % Ellipsoid method starts here
 [f, bun, Eun] = Lag_dual_f_rate(H, theta, w, Eu, cb);
 g = Eu - sum(Eun,2); % sub-gradient
 if sqrt(g' * A * g) <= err % stopping criteria
 break
 end
 % Updating the ellipsoid
 gt = g / sqrt(g' * A * g);
end
\[w = w - \frac{1}{U + 1} \cdot A \cdot gt; \]
\[A = U^2 / (U^2 - 1) \cdot (A - 2 / (U + 1) \cdot A \cdot gt \cdot gt' \cdot A); \]
\[\text{ind} = \text{find}(w < \text{zeros}(U,1)); \]

while ~isempty(ind) % This part is to make sure that w is feasible,
\[g = \text{zeros}(U,1); \] % it was not covered in the lecture notes and you may skip
\[\text{g(ind(1))} = -1; \]
\[gt = g / \sqrt{g' \cdot A \cdot g}; \]
\[w = w - \frac{1}{U + 1} \cdot A \cdot gt; \]
\[A = U^2 / (U^2 - 1) \cdot (A - 2 / (U + 1) \cdot A \cdot gt \cdot gt' \cdot A); \]
\[\text{ind} = \text{find}(w < \text{zeros}(U,1)); \]
end
\[\text{count} = \text{count} + 1; \]
end

\[\text{bun} = \text{bun} / \log(2); \] % conversion from nuts to bits
if \(N == 1 \)
\[\text{Eun} = (3-cb) \cdot \text{Eun}; \]
end

The subroutines called are

startEllipseRate.m

% function \([A, g] = \text{startEllipseRate}(H, Eu, theta)\)
% This function initializes the ellipsoid method for rate maximization problem.
% %
% function \([A, g] = \text{startEllipseRate}(G, Eu, theta)\)
% \(H\) contains the channel matrices as is defined in maxRMAC.m and \(Eu\) is
% the \(U\) by \(1\) power constraint vector, \(theta\) is the \(U\) by \(1\) rate weights.
% \(For\ all\ rate\ maximization\ WF\ steps,\ decoding\ order\ is\ 1,2,...\U.
% \%
% \(A\) is the matrix describing the starting ellipsoid and \(g\) is its center
% %***
% function \([A, g] = \text{startEllipseRate}(H, Eu, theta)\)
%
\[[\text{Ly}, U, N] = \text{size}(H); \]
\[\text{order} = [1:U]; \] % decoding order, arbitrary
\[\text{tmax} = \text{zeros}(U,1); \]
for \(u = 1:U \)
\[\text{bn} = \text{zeros}(U,N); \]
\[\text{en} = \text{zeros}(U,N); \]
\[\text{E} = \text{Eu}; \]
\[\text{E}(u) = \text{E}(u) \cdot 0.9; \]
\[\text{u1} = \text{flipud} \left(\text{order} \right); \] % starting from last user.
\[\text{for index} = 1:N \]
\[\quad \text{Rnoise}(:, :, \text{index}) = \text{eye} \left(\text{Ly} \right); \]
\[\text{end} \]
\[\text{for u2} = \text{flipud} \left(\text{order} \right) \] % Note that the users that have been decoded has zero E
\[\quad \text{if} \ u2 == \text{u1}, \]
\[\quad \text{else} \]

1052
for index = 1:N
 Rnoise(:,:,index) = Rnoise(:,:,index) + en(u2,index) * ...
 H(:,u2,index) * H(:,u2,index)';
end
end
end
for index = 1:N
 h_temp = Rnoise(:,:,index)^(-1/2) * H(:,u1,index);
 g(u1,index) = svd(h_temp)^2;
end
[b_temp, E_temp] = waterfill_gn(g(u1,:), Eu(u1) / N, 0);

en(u1,:) = E_temp;
bn(u1,:) = b_temp;

tmax(u) = sum(theta .* sum(bn,2)); % \sum_n \sum_u \theta_u bn_u
A = eye(U) * sum(tmax.^2) / 4; % an sphere centered at tmax/2

g = tmax / 2;

Lag_dual_f_rate.m

% function [f, b, E] = Lag_dual_f_rate(G, theta, w, Eu , cb);
% this function computes the Lagrange dual function by solving the
% optimization problem (calling the function minPtone) on each tone.
% the inputs are:
% 1) H, an Ly by U by N channel matrix. Ly is the number of receiver antennas,
% U is the total number of users and N is the total number of tones.
% H(:,;n) is the channel matrix for all users on tone n
% and H(:,u,n) is the channel for user u on tone n. In this code we assume each user
% only has single transmit antenna, thus H(:,u,n) is a column vector.
% 2) theta, a U by 1 vector containing the weights for the rates.
% 3) w, a U by 1 vector containing the weights for each user's power.
% 4) Eu, a U by 1 vector containing the power constraints for all the users
% 5) cb = 1 for complex bb and cb=2 for real bb
%
% the outputs are:
% 1) f, the Lagrange dual function value.
% 2) b, a U by N vector containing the rates for all users and over all tones
% that optimizes the Lagrangian. b(u,:) is the rate allocation for user
% u over all tones.
% 3) E, a U by N vector containing the powers for all users and over all tones
% that optimizes the Lagrangian. E(u,:) is the power allocation for
% user u over all tones.
% %%
function [f, b, E] = Lag_dual_f_rate(H, theta, w, Eu, cb);

[Ly, U, N] = size(H);
f = 0;
b = zeros(U,N);
E = zeros(U,N);

% Performing optimization over all N tones,
for i = 1:N
 [temp, b(:,i), E(:,i)] = minPtonerate(H(:, :, i), theta, w, cb);
 f = f + temp;
end
f = f + w' * Eu;

and

minPtonerate.m

% function [f, b, e] = minPtonerate(H, theta, w, cb)
% minPtone maximizes f = sum_{u=1}^U lambda_u * b_u - sum_{u=1}^U w_u * e_u
% subject to b \in C_g(H,e)
%
% the inputs are:
% 1) H, an Ly by U channel matrix. Ly is the number of receiver antennas,
% U is the total number of users.
% H(:,u) is the channel for user u. In this code we assume each user
% only has single transmit antenna, thus H(:,u) is a column vector.
% 2) theta, a U by 1 vector containing the weights for the rates.
% 3) w, a U by 1 vector containing the weights for each user's energy.
% 4) cb=1 for complex bb and cb=2 for real bb
%
% the outputs are:
% 1) f, the minimum value (or maximum value of the -1 * function).
% 2) b, a U by 1 vector containing the rates for all users
% that optimizes the given function.
% 3) e, a U by 1 vector containing the energies for all users
% that optimizes the given function.
function [f, b, e] = minPtonerate(H, theta, w, cb)

[Ly, U] = size(H);
[stheta, ind] = sort(-theta);
stheta = -stheta;
sH = H(:, ind);
sw = w(ind);

NT_max_it = 1000; % Maximum number of Newton's method iterations
dual_gap = 1e-6;
dual_gap = 1e-6;
dual_gap = 1e-6;
dual_gap = 1e-6;
mu = 10; % step size for t
alpha = 0.01; % back tracking line search parameters
beta = 0.5;

count = 1;
nerr = 1e-5; % acceptable error for inner loop

e = ones(U, 1); % Strictly feasible point;

t = .1;
l_p = 1; % for newton's method termination
while (1+U)/t > dual_gap
 t = t * mu;
 l_p = 1;
 count = 1;
 while l_p > nerr & count < NT_max_it
 f_val = eval_f(t * stheta, sH, e, t * sw); % calculating function value
 [g, h] = Hessian(t * stheta, sH, e, t * sw); % calculating the hessian and gradient
 de = -real(h\g); % search direction
 l_p = g' * de; % theta(e)^2 for Newton's method
 s = 1; % checking e = e+s*de feasible % and also back tracking algorithm
 e_new = e + s * de;
 if e_new > zeros(U,1)
 f_new = eval_f(t * stheta, sH, e_new, t * sw);
 feas_check = (f_new > f_val + alpha * s * g' * de);
 else
 feas_check = 0;
 end
 while ~feas_check
 s = s * beta;
 if s < 1e-40
 l_p = nerr/2;
 break
 end
 e_new = e + s * de;
 if e_new > zeros(U,1)
 f_new = eval_f(t * stheta, sH, e_new, t * sw);
 feas_check = (f_new > f_val + alpha * s * g' * de);
 else
 feas_check = 0;
 end
 end
 e = e + s * de; % update e
 count = count + 1; % number of Newtons method iterations
 end
end
M = eye(Ly) + sH(:,1) * sH(:,1)' * e(1);
b = zeros(U,1);
b(1) = (1/cb) * real(log(det(M)));
for u = 2:U
 b(u) = -(1/cb) * real(log(det(M)));
 M = M + sH(:,u) * sH(:,u)' * e(u);
 b(u) = b(u) + (1/cb) * real(log(det(M)));
end

b(ind) = b;
e(ind) = e;
f = theta' * b - w' * e;

maxRESMAC_cvx.m

function [Eun, w, bun] = maxRMAC_cvx(H, Eu, theta, cb)

% function [Eun, w, bun] = maxRMAC_cvx(H, Eu, theta, cb)
% maxRMAC_cvx Maximizes weighted rate sum subject to energy constraint, each
% user has ONLY ONE transmit antenna. It uses CVX and mosek. It only works
% for Lxu=1 on all users.
% INPUTS:
% H(:,u,n): Ly x U x N channel matrix. Ly = number of receiver antennas,
% U = number of users and N = number of tones.
% If the channel is real-bbd (cb=2), maxPMAC_cvx realizes user data rates
% over all the tones (or equivalently positive and negative
% freqs). This means the input H must be conjugate symmetric H_n =
% H_{N-n}^*. The program will reduce N by 2 and focus energy on the
% lower half of frequencies. Thus N>1 must be even for real channels.
% For real N=1 channel, the program runs and will produce half the data
% rates for the same complex N=1 channel.
% By constast if cb=1 (cplx bbd), maxRMAC_cvx need not have a conjugate
% symmetric H and N is not reduced.
% Eu: TOTAL SUM-ENERGY/symbol constraint for all user inputs.
% theta: weight on each user's rate, length-U vector.
% cb: =1 if H is complex baseband, and cb=2 if H is real baseband.
% OUTPUTS:
% Eun: U x N energy distribution. Eun(u,n) is user u’s energy allocation
% on tone n.
% w: U x 1 Lagrangian multiplier w.r.t. energy constraints
% bun: U by N bit distributions for all users.
% %%%
function [Eun, w, bun] = maxRMAC_cvx(H, Eu, theta,cb)
[Ly, U, N] = size(H);
if N>1
 if cb==2
 H=H(:,:,1:N/2);
 N=N/2;
 end
end
Eu = reshape(Eu,[],1);
theta = reshape(theta,[],1);
[stheta, idx] = sort(theta, 'descend');
delta = -diff([stheta;0]);
sH = H(:,idx, :);
Gs = zeros(Ly, Ly, U, N);
parfor n=1:N
 for u=1:U
 Gs(:,:,u,n) = sH(:,u,n)*sH(:,u,n)';
 end
end
cvx_begin quiet
cvx_solver mosek
 variable Eun(U,N) nonnegative
dual variable w
 expression r(U,N)
 S = cumsum(Gs.*repelem(reshape(Eun,1,1,U,N),Ly,Ly,1,1), 3);
 for u = 1:U
 for n = 1:N
 r(u,n) = log_det(S(:,:,u,n) + eye(Ly));
 end
 end
 maximize sum(delta'*r)
 subject to
 w: sum(sum(Eun,2))<=Eu;
 cvx_end
S = cumsum(Gs.*repelem(reshape(Eun,1,1,U,N),Ly,Ly,1,1), 3) + eye(Ly);
cumrate = zeros(U,N);
for u = 1:U
 for n = 1:N
 cumrate(u,n) = (1/cb)*real(log2(det(S(:,:,u,n))));
 end
end
bun(idx,:) = diff([zeros(1,N); cumrate]);
w(idx)=w;
end

maxRESMACMIMO.m

% function [Rxxs, Eun, w, bun] = maxRESMACMIMO(H, Lxu, Eu, theta , cb)
%
% maxRMAC_vector_cvx Maximize weighted rate sum subject to energy
% constraint. This uses cvx and mosek.
%
% INPUTS:
% H(:,u,n): Ly x U x N channel matrix. Ly = number of receiver antennas,
U = number of users and N = number of tones.

If the channel is real-bbd (cb=2), maxPMAC_cvx realizes user data rates over all the tones (or equivalently positive and negative freqs). This means the input H must be conjugate symmetric H_n = H_{N-n}^*. The program will reduce N by 2 and focus energy on the lower half of frequencies. Thus N>1 must be even for real channels. For real N=1 channel, the program runs and will produce half the data rates for the same complex N=1 channel.

By contrast if cb=1 (cplx bbd), maxRMAC_cvx need not have a conjugate symmetric H and N is not reduced.

Lxu 1 x U vector of user number of antennas

Eu: TOTAL SUM-ENERGY/symbol constraint for all user inputs.

theta: weight on each user’s rate, length-U vector.

cb: =1 if H is complex baseband, and cb=2 if H is real baseband.

Outputs:

Rxxs: U-by-N cell array containing Rxx(u,n)’s if Lxu is a length-U vector; or Lxu-by-Lxu-by-U-by-N tensor if Lxu is a scalar.

Eun: U x N energy distribution. Eun(u,n) is user u’s energy allocation on tone n.

w: U x 1 Lagrangian multiplier w.r.t. energy constraints

bun: U by N bit distributions for all users.

Rxxs:

Eun:

w:

bun:

**
function [Rxxs, Eun, w, bun] = maxRESMACMIMO(H, Lxu, Eu, theta, cb)

UNIFORM_FLAG = 0;

if N>1
 if cb==2
 H=H(:,:,1:N/2);
 N=N/2;
 end
end

if N == 1
 H = reshape(H,Ly,[],1);
end

Eu = reshape(Eu,[],1);
theta = reshape(theta,[],1);
[stheta, idx] = sort(theta, 'descend');
delta = -diff([stheta;0]);
U = length(Eu);
if length(Lxu) == 1
 Lxu = ones(1,U)*Lxu;
 UNIFORM_FLAG = 1;
end
Lxu_max = max(Lxu);
index_end = cumsum(Lxu);
index_start = [1,index_end(1:end-1)+1];
Lxu = Lxu(idx);
index_start = index_start(idx);
index_end = index_end(idx);
cvx_begin quiet
cvx_solver mosek
variable rxxs(Lxu_max, Lxu_max, U, N) hermitian
dual variable w
expressions r(U,N) S(Ly, Ly) Eun(U,N)
for n = 1:N
S=eye(Ly);
for u = 1:U
S = S + H(:,index_start(u):index_end(u),n)...
*rxxs(1:Lxu(u),1:Lxu(u),u,n)...
*H(:,index_start(u):index_end(u),n)';
r(u,n) = log_det(S);
Eun(u,n) = trace(rxxs(1:Lxu(u),1:Lxu(u),u,n));
end
maximize sum(delta'*r)
subject to
w: sum(sum(Eun,2))<=Eu;
for u = 1:U
for n=1:N
rxxs(1:Lxu(u),1:Lxu(u),u,n)==hermitian_semidefinite(Lxu(u));
end
end
cvx_end
cumrate = zeros(U,N);
for n = 1:N
S=eye(Ly);
for u = 1:U
S = S + H(:,index_start(u):index_end(u),n)...
*rxxs(1:Lxu(u),1:Lxu(u),u,n)...
*H(:,index_start(u):index_end(u),n)';
cumrate(u,n) = (1/cb)*real(log2(det(S)));
end
eu(idx,:) = diff([zeros(1,N); cumrate]);
w(idx)=w;
if UNIFORM_FLAG
Rxxs(:,:,idx,1:N) = rxxs;
for u = 1:U
for n = 1:N
Eun(idx(u),n) = trace(Rxxs(:,:,u,n));
end
end
else
Rxxs = cell(U,N);
for u = 1:U
 for n = 1:N
 Rxxs{idx(u),n} = rxxs(1:Lxu(u),1:Lxu(u),u,n);
 Eun(idx(u),n) = trace(Rxxs{idx(u),n});
 end
end
end

minPMAC.m and related programs

% function [Eun, theta, bun, FEAS_FLAG, bu_a, info] = minPMAC(H, bu, w, cb)
% % This main function contains ellipsoid method part and calls directly or
% % indirectly 6 other functions. minPMAC uses no CVX. Another routine
% % minPMAC_cvx uses cvx and usually runs longer. However, these scalar
% % minPMAC programs assume each user has Lxu = 1;
% % There is a CVX-using program minPMACMIMO that allows variable Lxu.
% %
% % INPUTS:
% % H(:,u,n): Ly x U x N channel matrix. Ly = number of receiver antennas,
% % U = number of users and N = number of tones.
% %
% % If the channel is real-bbd (cb=2), minPMAC realizes user data rates
% % over the lower half of the tones (or equivalently, the positive
% % freqs), and directly corresponds to the input bu user-data rate vector.
% % N is the number of tones actually transmitted (so corresponds to a 2N
% % size FFT when cb=2).
% %
% % By constast if cb=1 (cplx bbd), minPMAC realizes user data rates
% % over all tones, but uses the same core optimization, so the data rate
% % is halved internal to the program, realizing that half bu rate on the
% % lower tones, because the designer (cb=1) wants it over all tones.
% % N is the number of tones actually transmitted (so corresponds to a N
% % size full-complex FFT when cb=1).
% %
% % bu_min: U x 1 vector containing the target rates for all the users.
% %
% % w: U x 1 vector containing the weights for each user’s power.
% %
% % cb: =1 if H is complex baseband, and cb=2 if H is real baseband.
% %
% % OUTPUTS:
% % Eun: U by N energy distribution that minimizes the weighted-sum energy.
% % E(u,n) is user u’s energy allocation on tone n.
% % theta: the optimal U by 1 dual variable vector containing optimal weights
% % of rates. Theta determines the decoding order. Largest theta is
% % decoded last, and smallest first.
% % bun, U by N bit distributions for all users.
% % FEAS_FLAG: indicator of achievability.
% % FEAS_FLAG=1 if the target is achieved by a single ordering;
% % FEAS_FLAG=2 if the target is achieved by time-sharing
% % bu_a: U-by-1 vector showing achieved sum rate of each user.
% % info: various length output depending on FEAS_FLAG
function [Eun, theta, bun, FEAS_FLAG, bu_a, info] = minPMAC_new(H, bu_min, w, cb)

tstart=tic;
bu_min=1/(3-cb)*bu_min;
err=1e-9;
conv_tol = 1e-2;% error tolerance

count = 0;
[Ly, U, N] = size(H);
w = reshape(w, U, 1);
bu_min = reshape(bu_min, U, 1);
bun = zeros(U,N);
Eun = zeros(U,N);

[A, g, w] = startEllipse(H, bu_min, w); % starting ellipsoid
theta = g;

bu_min = bu_min * log(2); % conversion from bits to nuts

while 1
 % Ellipsoid method starts here
 [~, bun, Eun] = Lag_dual_f(H, theta, w, bu_min);
g = sum(bun,2) - bu_min; % sub-gradient
if sqrt(g' * A * g) <= err % stopping criteria
 break
end % Updating the ellipsoid
tmp = A*g / sqrt(g' * A * g);
theta = theta - 1 / (U + 1) * tmp;
A = U^2 / (U^2 - 1) * (A - 2 / (U + 1) * (tmp * tmp'));
ind = find(theta < zeros(U,1));

while isempty(ind) % This part is to make sure that theta is feasible, % it was not covered in the lecture notes and you may skip
 g = zeros(U,1);
 g(ind(1)) = -1;
 tmp = A * g / sqrt(g' * A * g);
 theta = theta - 1 / (U + 1) * tmp;
 A = U^2 / (U^2 - 1) * (A - 2 / (U + 1) * (tmp * tmp'));
 ind = find(theta < zeros(U,1));
end

bun = (3-cb)*bun /log(2); % conversion from nats to bits

%-------------------------------
bu_min = (3-cb)*bu_min /log(2);
bu_a=sum(bun,2);

% ------- REORDER USERS ACCORDING TO THETA -------
% This ordering will need eventually to be reversed before returing from % this function.
[theta , Itheta] = sort(theta, 'descend');
[~, Jtheta]=sort(Itheta);
% theta = theta(Jtheta) reverses this sort later.
bu_a=bu_a(Itheta);
bun=bun(Itheta,:);
Eun=Eun(Itheta,:);
bu_min=bu_min(Itheta);
H=H(:,Itheta,:);

% SIMPLE CASE OF NO EQUAL-THETA USERS %
% This next section is implemented only if there are no equal-theta users % and then returns results.
if isempty(find(abs(diff(theta)) <= 1e-5*min(theta), 1))
 FEAS_FLAG = 1;
 bu_a=sum(bun,2);
 % restore the original order
 bu_a=bu_a(Jtheta);
 bu_v=bu_a';
 theta = theta(Jtheta);
 bun=bun(Jtheta,:);
 Eun=Eun(Jtheta,:);
 % make table and exit
info = table(bu_v, {Eun}, {bun}, {theta}, {Itheta(end:-1:1)}); % detailed info of boundary vertices
info.Properties.VariableNames(2:end) = {'Eun', 'bun', 'theta', 'order'};
toc(tstart)
return % ARRIVE HERE AND SIMPLE CASE IS DONE.PROGRAM OVER
end
%
%---------------------TWO OR MORE EQUAL-THETA USERS ------------------
% This point of program is only reached if there are equal theta values for
% two or more users. A convex combination of those orders different rate
% vectors will implement vertex sharing. The info table above does not
% exist if we are in this section. So it will be initialized and then
% vertices added to it.

% Only need vertices corresponding to the number of equal-theta users,
% which number will be the sizeset+1 that this section generates. Thus,
% there is no need for U! orders to be searched (which is usually a much
% larger number.

% ----------- ENUMERATION OF POSSIBLE ORDERS ---------------
% there will be sizeset+1 orders to check when this section completes as
% the top sizeset+1 rows of the matrix order.
% invorder restores the original order

spots = diff([-theta', 0]) < 1e-7*norm(theta);
sizeclus = []; % size of each cluster
numclus = 0; % number of clusters (>1 equal-theta groups)
set_thetaeq = []; % index of the first entry of each cluster

i = 1;
while i <= U
 sizeset = 1;
 flagclus = 0;
 while spots(i) == 1
 sizeset = sizeset + 1;
 if ~flagclus % enter a new cluster, save the last user
 set_thetaeq = [set_thetaeq, i];
 flagclus = 1;
 numclus = numclus + 1;
 end
 i = i+1;
 end
 if sizeset > 1
 sizeclus = [sizeclus, sizeset];
 end
 i = i+1;
end

order=repmat(1:U,sum(sizeclus-1),1);
cumsize = cumsum([0,sizeclus-1]);

for jdx = 1:numclus
 Jright = eye(sizeclus(jdx));
 Jright = [Jright(:,end), Jright(:,1:end-1)];
 Jleft = Jright' ;
u_range = set_thetaeq(jdx):set_thetaeq(jdx)+sizeclus(jdx)-1; % users in cluster jdx
for i = 1:sizeclus(jdx)-1
 order(cumsize(jdx)+i, u_range) = u_range * Jleft^(i); % all permutated orders (excluding 1,2,...U in each cluster)
end
end

% ----------- FIND FIRST VERTEX & CREATE INFO TABLE ----------
bu_v = sum(bun,2)'; % 1xU
initialbu_v = bu_v;
initialbun = bun;
firstvertices = de2bi(0:2^U-1).*initialbu_v;

% The vertices will be stored in a table that is indexed by bu_v
initialinfo = table(bu_v, {Eun}, {bun}, {theta}, {U:-1:1}); % detailed info of boundary vertices
initialinfo.Properties.VariableNames(2:end) = {'Eun' 'bun' 'theta', 'order'};

% ----- For each cluster -----------
for jdx=1:numclus
 if jdx == 1
 Sinit = repmat(eye(Ly),1,1,N);
 cumrateinit = zeros(1, N);
 for n = 1:N
 for i = 1:set_thetaeq(1)-1
 Sinit(:,:,n) = Sinit(:,:,n) + H(:,i,n)*Eun(i,n)*H(:,i,n)';
 end
 cumrateinit(n) = (1/cb)*real(log2(det(Sinit(:,:,n))));
 end
 else
 for n = 1:N
 for i = set_thetaeq(jdx-1):set_thetaeq(jdx-1)+sizeclus(jdx)-1
 Sinit(:,:,n) = Sinit(:,:,n) + H(:,i,n)*Eun(i,n)*H(:,i,n)';
 end
 cumrateinit(n) = (1/cb)*real(log2(det(Sinit(:,:,n))));
 end
 end
 u_range = set_thetaeq(jdx):set_thetaeq(jdx)+sizeclus(jdx)-1;
 bu_v=initialbu_v;
 known_vertices = initialinfo; % detailed info of boundary vertices
 bd_vertices = bu_v(u_range); % track critical boundary vertices
 vertices = de2bi(0:2^sizeclus(jdx)-1).*bd_vertices;
 if min(bd_vertices - bu_min(u_range)') >= -conv_tol % achievable w/o time share
 info = known_vertices;
 info.frac = 1;
 info.clusterID = jdx;
 if jdx == 1
 Big_info = info;
 else
 Big_info = [Big_info; info];
 end
 continue;
 end
 bd_V = 1;
for idx = cumsize(jdx)+1:cumsize(jdx)+sizeclus(jdx)-1 % add more vertices in cluster jdx
cumrate = zeros(sizeclus(jdx)+1, N);
cumrate(1,:) = cumrateinit;
for n = 1:N
 rel_idx = 2;
 S = Sinit(:,:,n);
 for u = u_range
 u_or = order(jdx, u);
 S = S + H(:,u_or,n)*Eun(u_or,n)*H(:,u_or,n)';
 cumrate(rel_idx,n) = (1/cb)*real(log2(det(S)));
 rel_idx = rel_idx + 1;
 end
end
bun = initialbun;
bun(u_range,:) = diff(cumrate);
bun(order(idx,:),:) = bun;
bu_v = sum(bun, 2)';
bd_V = bd_V + 1;
bv_vertices_extend = [bd_vertices; bu_v(u_range)];
known_vertices = [known_vertices; {bu_v, {Eun}, {bun}, {theta}, {order(idx,end:-1:1)}}];
vertices = [vertices; de2bi(0:2^sizeclus(jdx)-1).*bu_v(u_range)];
tess = convhulln(vertices);
vertices = vertices(unique(tess),:);
bd_vertices = intersect(bv_vertices_extend, vertices, 'rows', 'stable');
tess = convhulln(vertices);
if size(bd_vertices, 1) < bd_V
 to_remove = setdiff(bv_vertices_extend, bd_vertices, 'rows');
 known_vertices(ismember(known_vertices.bu_v(u_range), to_remove, 'rows'),:) = [];
 bd_V = size(bd_vertices, 1);
end
if inhull(bu_min(u_range)', vertices, tess, conv_tol) % bu_min achievable by time-share
 FEAS_FLAG = 2;
 frac = bd_vertices'\bu_min(u_range);
 a_v = find(frac >= err); % active vertices in time-share
 info = known_vertices(a_v, :);
 info.frac = frac(a_v);
 info.clusterID = ones(length(a_v), 1)*jdx;
 bu_a(u_range) = bd_vertices(a_v,:)'*frac(a_v);
 break;
end

% write big info table
if jdx == 1
 Big_info = info;
else
 Big_info = [Big_info; info];
end

info = Big_info;
bd_V = size(info.bu_v, 1);

% ------------------ RESTORE ORIGINAL ORDER TO ALL ------------------
theta = theta(Jtheta);
tempttheta = reshape(cell2mat(info.theta), U, bd_V);
tempttheta = tempttheta(Jtheta,:);
info.theta = mat2cell(tempttheta', [ones(1,bd_V), U], U);

% tempbun=reshape(cell2mat(info.bun),U,bd_V,N);
tempbun=permute(tempbun,[2 1 3]);
info.bun=mat2cell(tempbun,[ones(1,bd_V), U, N], U, N);

% tempEun=reshape(cell2mat(info.Eun),U,bd_V,N);
tempEun=permute(tempEun,[2 1 3]);
info.Eun=mat2cell(tempEun,[ones(1,bd_V), U, N], U, N);

% bu_a = bu_a(Jtheta);
info.bu_v=info.bu_v(:,Jtheta);

% tmporder = cell2mat(info.order);
tmporder = Itheta(tmporder);
info.order = mat2cell(tmporder, ones(1,bd_V), U, N);
toc(tstart)
end

minPtone.m

% function [f, b, e] = minPtone(H, theta, w, N)
% minPtone maximizes f = \sum_{u=1}^{U} \lambda_u * b_u - \sum_{u=1}^{U} w_u * e_u
% subject to b \in C_g(G,e); presumably for a single tone.
%
% Inputs:
% 1) H, an Ly by U channel matrix. Ly is the number of receiver antennas,
% U is the total number of users.
% H(:,u) is the channel for user u. minPtone assumes each user
% has only a single transmit antenna, thus H(:,u) is a column vector.
% 2) theta, a U by 1 vector containing the weights for the rates.
% 3) w, a U by 1 vector containing the weights for each user's power.
% 4) N is needed to pass to subroutines so that PSD is increased at fixed
% sampling rate relative to noise-whitening.
%
% Outputs:
% 1) f, the minimum value (or maximum value of the -1 * function).
% 2) b, a U by 1 vector containing the rates for all users
% that optimizes the given function.
% 3) e, a U by 1 vector containing the PSD for all users
% that optimizes the given function.
%
% Subroutines called are eval_f, Hessian
function [f, b, e] = minPtone(H, theta, w)


```matlab
[Ly, U] = size(H);
[stheta, ind] = sort(-theta);
stheta = -stheta;
sH = H(:, ind);
sw = w(ind);

NT_max_it = 1000; % Maximum number of Newton's method iterations
dual_gap = 1e-6;
mu = 10; % step size for t
alpha = 0.01; % back tracking line search parameters
beta = 0.5;

count = 1;
nerr = 1e-5; % acceptable error for inner loop Newton's method

e = ones(U, 1); % Strictly feasible point;
t = .1;
l_p = 1; % for newton's method termination

while (1+U)/t > dual_gap
    t = t * mu;
    l_p = 1;
    count = 1;
    while l_p > nerr & count < NT_max_it
        f_val = eval_f(t * stheta, sH, e, t * sw);
        % calculating function value
        [g, h] = Hessian(t * stheta, sH, e, t * sw);
        % calculating the hessian and gradient
        de = -real(h
g);
        % search direction
        l_p = g' * de;
        % theta(e)^2 for Newton's method
        s = 1;
        % checking e = e+s*de feasible
        e_new = e + s * de;

        if e_new > zeros(U, 1)
            f_new = eval_f(t * stheta, sH, e_new, t * sw);
            feas_check = (f_new > f_val + alpha * s * g' * de);
        else
```

1067
feas_check = 0;
end

while ~feas_check
 s = s * beta;
 if s < 1e-40
 l_p = nerr/2;
 break
 end
 e_new = e + s * de;
 if e_new > zeros(U,1)
 f_new = eval_f(t * stheta, sH, e_new, t * sw);
 feas_check = (f_new > f_val + alpha * s * g' * de);
 else
 feas_check = 0;
 end
end
e = e + s * de; % update e
count = count + 1; % number of Newtons method iterations
end

M = eye(Ly) + sH(:,1) * sH(:,1)' * e(1);
b = zeros(U,1);
b(1) = 0.5 * real(log(det(M)));
for u = 2:U
 b(u) = -0.5 * real(log(det(M)));
 M = M + sH(:,u) * sH(:,u)' * e(u);
 b(u) = b(u) + 0.5 * real(log(det(M)));
end

b(ind) = b;
e(ind) = e;
f = theta' * b - w' * e;

Lag_dual_f

% function [f, b, E] = Lag_dual_f(H, theta, w, bu);
%
% Lag_dual_f computes the Lagrange dual function by solving the
% optimization problem (calling the function minPtone) on each tone.
%
% Inputs:
% 1) H, an Ly by U by N channel matrix. Ly is the number of receiver antennas,
% U is the total number of users and N is the total number of tones.
% 2) H(:,,:,n) is the channel matrix for all users on tone n
% and H(:,u,n) is the channel for user u on tone n. Lag_dual_f assumes each user
% only has single transmit antenna, thus H(:,u,n) is a column vector.
\% 2) \theta, a U by 1 vector containing the weights for the rates.
\% 3) \omega, a U by 1 vector containing the weights for each user's power.
\% 4) \nu, a U by 1 vector containing the target rates for all the users.

\% Outputs:
\% 1) f, the Lagrange dual function value.
\% 2) b, a U by N vector containing the rates for all users and over all tones
\% that optimizes the Lagrangian. b(u,:) is the rate allocation for user
\% u over all tones.
\% 3) \nu, a U by N vector containing the powers for all users and over all tones
\% that optimizes the Lagrangian. \nu(u,:) is the power allocation for
\% user u over all tones.

\% subroutines called: minPtone
function \[f, b, E\] = Lag_dual_f(H, \theta, \omega, \nu);

[Ly, U, N] = size(H);
f = 0;
b = zeros(U,N);
E = zeros(U,N);

\% Performing optimization over all N tones,
for i = 1:N
 \[temp, b(:,i), E(:,i)\] = minPtone(H(:,:,i), \theta, \omega);
 f = f + temp;
end

f = f - \theta' * \nu;

\eval_f.m

\% function f = eval_f(\theta, H, \omega, \nu, N)
\%
\% eval_f evaluates the value of the function,
\%
\% f(\omega) = (\theta_1 - \theta_2)/2 * \log \det(\mathbf{I} + H_1 * H_1') +
\% (\theta_2 - \theta_3)/2 * \log \det(\mathbf{I} + H_1 * H_1' + e_1 + H_2 * H_2') + ...
\% (\theta_{U-1} - \theta_U)/2 * \log \det(\mathbf{I} + H_1 * H_1' + ... + H_{U-1} * e_{U-1}) +
\% \theta_U/2 * \log \det(\mathbf{I} + H_1 * G_1' + e_1 + ... + H_N * e_N) - \omega^T * \omega + \sum_{u=1}^U \log(\omega_u)
\%
\% theta should be in decreasing order, \theta_1 >= \theta_2 >= ... >=\theta_U.
\%
\% the inputs are:
\% 1) \theta, a U by 1 vector of weights for the rates.
\% 2) H, an Ly by U channel matrix. H(:,u) is the channel
\% vector for user u. Again each user has just one transmit antenna.
\% 3) \omega, a U by 1 vector containing each user's power.
\% 4) \nu, a U by 1 vector containing weights for each user's power
\%
\% the output is f the function value given above.
\% no subroutines are called and this function does not need to know N
function f = eval_f(\theta, H, \omega, \nu)

[Ly,U] = size(H);
\[
\theta = 0.5 \times (\theta - \theta(2:U); 0));
\]

\[
M = \text{zeros}(Ly, Ly, U); \quad % M(:, :, i) = (I + \sum_{u=1}^{i} G_u \times G_u^H \times e_u)^{\times -1}
\]

\[
M(:, :, 1) = \text{eye}(Ly) + H(:, 1) \times H(:, 1)' \times e(1); \quad % M is computed recursively
f = \theta(1) \times \log(\text{det}(M(:, :, 1))) + \log(e(1)) - w(1) \times e(1);
\]

\begin{verbatim}
for u = 2:U
 M(:, :, u) = M(:, :, u-1) + H(:, u) \times H(:, u)' \times e(u);
 f = f + \theta(u) \times \log(\text{det}(M(:, :, u))) + \log(e(u)) - w(u) \times e(u);
end
\end{verbatim}

\begin{verbatim}
Hessian.m
% function [g, H] = Hessian(theta, G, e, w)
% % This function calculates the gradient (g) and the Hessian (H) of the
% % function f(e) = (\theta_1 - \theta_2)/2 \times \log \text{det}(I + G_1 \times G_1^H \times e_1) +
% % (\theta_2 - \theta_3)/2 \times \log \text{det}(I + G_1 \times G_1^H \times e_1 + G_2 \times G_2^H \times e_2) +
% % ... + (\theta_{U-1} - \theta_U)/2 \times \log \text{det}(I + G_1 \times G_1^H \times e_1 + \ldots + G_{U-1} \times G_{U-1}^H \times e_{U-1}) +
% % \theta_U/2 \times \log \text{det}(I + G_1 \times G_1^H \times e_1 + \ldots + G_U \times G_U^H \times e_U) - w^T \times e + \sum_{u=1}^{U} \log(e_u)
% theta should be in decreasing order, theta_1 >= theta_2 >= ... >= theta_U.
%
% the inputs are:
% 1) theta, a U by 1 vector of weights for the rates.
% 2) G, an Ly by U channel matrix. G(:, u) is the channel
% vector for user u. Again each user has just one transmit antenna.
% 3) e, a U by 1 vector containing each user's power.
% 4) w, a U by 1 vector containing weights for each user's power
%
% the outputs are:
% 1) g, U by 1 gradient vector.
% 2) H, U by U Hessian matrix.
function [g, H] = Hessian(theta, G, e, w)
[Ly, U] = size(G);
theta = 0.5 \times (\theta - \theta(2:U); 0));
M = \text{zeros}(Ly, Ly, U); \quad % M(:, :, i) = (I + \sum_{u=1}^{i} G_u \times G_u^H \times e_u)^{\times -1}
% M is computed recursively using matrix inversion lemma
M(:, :, 1) = \text{eye}(Ly) - G(:, 1) \times G(:, 1)' \times e(1) / (1 + e(1) \times G(:, 1)' \times G(:, 1));
for u = 2:U
 M(:, :, u) = M(:, :, u-1) - M(:, :, u-1) \times G(:, u) \times G(:, u)' \times e(u) / (1 + e(u) \times G(:, u)',
end

\end{verbatim}

\[
g = \text{zeros}(U, 1);
% g_u = \sum_{j=u}^{U} \theta_j \times G_u \times M_j \times G_u^H - w_u + 1/e_u
for u = 1:U
 for j = u:U
 g(u) = g(u) + \theta(j) \times G(:, u)' \times M(:, :, j) \times G(:, u);
 end
end
end

g = g + 1./ e - w;

% H_{u,l} = \sum_{j = \max(u,l)}^U -\theta_j \cdot \text{tr}(G_u \cdot G_u^H \cdot M_j \cdot G_l \cdot G_l^H \cdot M_j) - 1/e_u^2 \cdot \delta(u-l)

H = zeros(U,U);
for u = 1:U
 for l = 1:U
 for j = max(u,l):U
 H(u,l) = H(u,l) - \theta_j \cdot \text{trace}(G(:,u) \cdot G(:,u)' \cdot M(:,:,j) \cdot G(:,l) \cdot G(:,l)' \cdot M(:,:,j));
 end
 end
end
H = H - diag(1./(e.^2));

startEllipse.m

% function [A, g] = startEllipse(H, bu, w)%
% This function initializes the ellipsoid method for power minimization problem
% specifically for problem 13.11 in EE479 class.
% %
% function [A, g] = startEllipse(H, bu)
% G contains the channel matrices as is defined in minPMAC.m and bu is
% the target U by 1 rate vector, w is the U by 1 power weights.
% % For all fixed margin WF steps, decoding order is 1,2,...U.
% %
% % A is the matrix describing the staring ellipsoid and g is its center
% % subroutine called fmwaterfill gn

function [A, g] = startEllipse(H, bu, w)

[Ly, U, N] = size(H);

order = 1:U; % decoding order, arbitrary
tmax = zeros(U,1);
Rnoise = zeros(Ly,Ly,N);
g = zeros(U,N);

for u = 1:U
 en = zeros(U,N);
 b = bu;
 b(u) = b(u) + 1;
 for u1 = flipud(order) % starting from last user.
 Rnoise(:,:,index) = eye(Ly);
 end
 for u2 = flipud(order) % Note that the users that have been decoded has zero E
 if u2 == u1
 for index = 1:N
 Rnoise(:,:,index) = Rnoise(:,:,index)/N + en(u2,index) * ...
H(:,u2,index) * H(:,u2,index)';

for index = 1:N
 h_temp = sqrtm(Rnoise(:,:,index)) \ H(:,u1,index);
 g(u1,index) = abs(svd(h_temp))^2;
 [~, E_temp] = fmwaterfill_gn(g(u1,:), b(u1)/N, 0);
 en(u1,:) = E_temp;
end

max_t = sum(w .* sum(en,2)); % sum_n \sum_u \w_u En_u

A = eye(U) * sum(tmax.^2) / 4; % an sphere centered at tmax/2

% function [bn, en] = fmwaterfill_gn(gn, b_bar, gap)

% INPUT
% gn is the channel gain (a row vector).
% b_bar is the target bit rate (b_total / Ntot)
% gap is the gap in dB
% OUTPUT
% en is the energy in the nth subchannel
% bn is the bit in the nth subchannel
% dB into normal scale

function [bn, en] = fmwaterfill_gn(gn, b_bar, gap)
 gap = 10^(gap/10);
 [col Ntot] = size(gn);
 if col ~= 1
 error = 1
 return;
 end

 % initialization
 en = zeros(1, Ntot);
 bn = zeros(1, Ntot);

 % Now do waterfilling %

 % sort
 [gn_sorted, Index] = sort(gn); % sort gain, and get Index
 gn_sorted = fliplr(gn_sorted); % flip left/right to get the largest
Index = fliplr(Index); % also flip index
num_zero_gn = length(find(gn_sorted == 0));
Nstar = Ntot - num_zero_gn; % number of zero gain subchannels

% Number of used channels,
% start from Ntot - (number of zero gain subchannels)
while(1)
 % The K calculation has been modified in order to
 % accomodate the size of the number
 logK = log(gap) + 1/Nstar * ((Ntot) * b_bar * 2 * log(2) - sum(log(gn_sorted(1:Nstar))));
 K = exp(logK);
 En_min = K - gap/gn_sorted(Nstar);
 % En_min occurs in the worst channel
 if (En_min<0)
 Nstar = Nstar - 1; % If negative En, continue with less channels
 else
 break; % If all En positive, done.
 end
end

En = K - gap./gn_sorted(1:Nstar); % Calculate En
Bn =.5 * log2(K * gn_sorted(1:Nstar)/gap); % Calculate bn
bn(Index(1:Nstar))=Bn; % return values in original index
en(Index(1:Nstar))=En; % return values in original index

minPMACMIMO % This is a more general minPMAC program that allows variable number of antenas
% and uses CVX.

% function [FEAS_FLAG, bu_a, info] = minPMACMIMO(H, Lxu, bu_min, w, cb)
% % INPUTS:
% % H(:,u,n): Ly x U x N channel matrix. Ly = number of receiver antennas,
% % U = number of users and N = number of tones.
% % If the channel is real-bbd (cb=2), minPMAC realizes user data rates
% % over the lower half of the tones (or equivalently, the positive
% % freqs), and directly corresponds to the input bu_min user-data rate vector.
% % By constast if cb=1 (cplx bbd), minPMAC realizes user data rates over
% % all tones, but uses the same real-bbd core optimization that doubles the
% % number of tones with an equivalent-gain set, so this program halves
% % the data rate internally and realizes that half bu_min rate on the
% % lower tones, which is the input set for which results are reported.
% % Lxu: 1 x 1 or 1 x U vector containing each users’ number of
% % transmit antennas. If Lxu is 1 x 1, each user has Lxu antennas.
% % bu_min: U x 1 vector containing the target rates for all the users.
% % w: U x 1 vector containing the weights for each user’s energy.

1073
cb: =1 if H is complex baseband, and cb=2 if H is real baseband.

Outputs:
- FEAS_FLAG: indicator of achievability.
 - FEAS_FLAG=1 if the target is achieved by a single ordering;
 - FEAS_FLAG=2 if the target is achieved by time-sharing
- bu_a: U-by-1 vector showing achieved sum rate of each user.
- info: various length output depending on FEAS_FLAG
 --if FEAS_FLAG=1: 1 x 4 cell array containing
 {Rxxs, Eun, bun, theta} corresponds to the single vertex
 there are no equal-theta user sets in this case
 --if FEAS_FLAG=2: 1-x 6 cell array, with each row representing
 a time-shared vertex {Rxxs, Eun, bun, theta, frac}
 there are numclus equal-theta user sets in this case.

info's row entries in detail (one row for each vertex shared
- Rxxs: U-by-N cell array containing Rxx(u,n)'s if Lxu is a
 length-U vector; or Lxu-by-Lxu-by-U-by-N tensor if Lxu is a
 scalar. If the rate target is infeasible, output 0.
- Eun: U-by-N matrix showing users’ transmit energy on each tone.
 If infeasible, output 0.
- bun: U-by-N matrix showing users’ rate on each tone. If
 infeasible, output 0.
- theta: U-by-1 Lagrangian multiplier w.r.t. target rates
- order: produces the order from left(best) to right for vertex
- frac: fraction of dimensions for each vertex in time share (FF =2
 ONLY)
- cluster: index (to which cluster the user belongs; 0 means no
 cluster)

Functions called are
 startEllipse_var_Lxu
 minPtoneMIMO

function [FEAS_FLAG, bu_a, info] = minPMACMIMO(H, Lxu, bu_min, w, cb)
tstart=tic;

bu_min=1/(3-cb)*bu_min;
err=1e-9;
conv_tol = 1e-1;
[Ly, ~, N] = size(H);
U = length(w);
% Yun, I don't think these next 3 lines change anything?
if N == 1
 H = reshape(H, Ly, [], 1);
end
w = reshape(w, U, 1);
bu_min = reshape(bu_min, U, 1);

% initialize
count = 0;
bun = zeros(U, N);
Eun = zeros(U, N);
Rxxs = cell(1, N);
[A, theta] = startEllipse_var_Lxu(H, Lxu, bu_min, w);
bu_min = bu_min*log(2);

if length(Lxu) == 1
 Lxu = ones(1,U)*Lxu;
 UNIFORM_FLAG = 1;
end

while 1
 % solve for each tone
 parfor tone = 1:N
 [~, bun(:,tone), Rxxs{tone}, Eun(:,tone)] = minPtoneMIMO(H(:,:,tone), Lxu, theta, w);
 end
 % update ellipsoid for theta
 g = sum(bun,2) - bu_min;
 % stopping criteria
 tmp_err = sqrt(g'*A*g);
 if tmp_err <= err
 break
 end
 gt = g/tmp_err;
 tmp = A*gt;
 theta = theta - 1/(U + 1)*tmp;
 A = U^2/(U^2 - 1)*(A - 2/(U + 1)*(tmp*tmp'));
 ind = find(theta < zeros(U,1));
 while isempty(ind) % This part is to make sure that theta is feasible,
 g = zeros(U,1);
 g(ind(1)) = -1;
 tmp = A * g / sqrt(g' * A * g);
 theta = theta - 1 / (U + 1) * tmp;
 A = U^2 / (U^2 - 1) * (A - 2 / (U + 1) * (tmp * tmp'));
 ind = find(theta < zeros(U,1));
 end
 count = count+1;
end

% if max(Lxu) == 1
% Rxxs = Eun;
% end
bun = (3-cb)*bun /log(2);
bu_min = (3-cb)*bu_min /log(2);
bu_a=sum(bun,2);

% ------------ REORDER USERS ACCORDING TO THETA ------------
% This ordering will need eventually to be reversed before returning from
% this function.
[theta , Itheta] = sort(theta, 'descend');
[~, Jtheta]=sort(Itheta);
% theta = theta(Jtheta) reverses this sort later.
bu_a=bu_a(Itheta);
bun=bun(Itheta,:);
Eun=Eun(Itheta,:);
bu_min=bu_min(Itheta);
index_end = cumsum(Lxu);
index_start = [1, index_end(1:end-1)+1];
hidx = [];
for i = Itheta'
 hidx = [hidx, index_start(i):index_end(i)];
end
Lxu = Lxu(Itheta);
index_end = cumsum(Lxu);
index_start = [1, index_end(1:end-1)+1];
H=H(:,hidx,:);
for tone=1:N
 Rxxs{tone}= Rxxs{tone}(Itheta);
end

% -------------- SIMPLE CASE OF NO EQUAL-THETA USERS --------------
% This next section is implemented only if there are no equal-theta users
% and then returns results.
if isempty(find(abs(diff(theta)) <= 1e-5*min(theta), 1))
 FEAS_FLAG = 1;
 bu_a=sum(bun,2);
 % restore the original order
 bu_a=bu_a(Jtheta);
 bu_v=bu_a';
 theta = theta(Jtheta);
 bun=bun(Jtheta,:);
 Eun=Eun(Jtheta,:);
 for tone=1:N
 Rxxs{tone}= Rxxs{tone}(Jtheta);
 end
% make table and exit
 info = table(bu_v, Rxxs, {Eun}, {bun}, {theta}, {Itheta(end:-1:1)}); % detailed info of boundary
 info.Properties.VariableNames(2:end) = {'Rxxs', 'Eun', 'bun', 'theta', 'order'};
 toc(tstart)
 return % ARRIVE HERE AND SIMPLE CASE IS DONE.PROGRAM OVER
end
% %
%%---------------------TWO OR MORE EQUAL-THETA USERS -------------------
% This point of program is only reached if there are equal theta values for
% two or more users. A convex combination of those orders different rate
% vectors will implement vertex sharing. The info table above does not
% exist if we are in this section. So it will be initialized and then
% vertices added to it.

% Only need vertices corresponding to the number of equal-theta users,
% which number will be the sizeset+1 that this section generates. Thus,
% there is no need for U! orders to be searched (which is usually a much
% larger number.

% ------------ ENUMERATION OF POSSIBLE ORDERS ------------
% there will be setsize+1 orders to check when this section completes as
% the top setsize+1 rows of the matrix order.
% invorder restores the original order

spots = diff([-theta', 0]) < 1e-7*norm(theta);
sizeclus = [];
% size of each cluster
numclus = 0;
% number of clusters (>1 equal-theta groups)
set_thetaeq = [];
% index of the first entry of each cluster

i = 1;
while i <= U
 sizeset = 1;
 flagclus = 0;
 while spots(i) == 1
 sizeset = sizeset + 1;
 if ~flagclus
 set_thetaeq = [set_thetaeq, i];
 flagclus = 1;
 numclus = numclus + 1;
 end
 i = i+1;
 end
 if sizeset > 1
 sizeclus = [sizeclus, sizeset];
 end
 i = i+1;
end

order=repmat(1:U,sum(sizeclus-1),1);
cumsize = cumsum([0,sizeclus-1]);
for jdx = 1:numclus
 Jright = eye(sizeclus(jdx));
 Jright = [Jright(:,end), Jright(:,1:end-1)];
 Jleft = Jright';
 u_range = set_thetaeq(jdx):set_thetaeq(jdx)+sizeclus(jdx)-1;
 for i = 1:sizeclus(jdx)-1
 order(cumsize(jdx)+i, u_range) = u_range * Jleft^(i);
 end
end

% ------------ FIND FIRST VERTEX & CREATE INFO TABLE ------------
bu_v = sum(bun,2)';
% 1xU
initialbu_v = bu_v;
initialbun = bun;
firstvertices = de2bi(0:2^U-1).*initialbu_v;

% The vertices will be stored in a table that is indexed by bu_v
initialinfo = table(bu_v, Rxxs, {Eun}, {bun}, {theta}, {U:-1:1});
initialinfo.Properties.VariableNames(2:end) = {'Rxxs' 'Eun' 'bun' 'theta' 'order'};
% ----- For each cluster -----------
for jdx=1:numclus
 if jdx == 1
 Sinit = repmat(eye(Ly),1,1,N);
 cumrateinit = zeros(1, N);
 for n = 1:N
 for i = 1:set_thetaeq(1)-1
 Sinit(:,:,n) = Sinit(:,:,n) + H(:,index_start(i):index_end(i),n)*Rxxs{n}{i}*H(:,index_start(i):index_end(i),n)';
 end
 cumrateinit(n) = (1/cb)*real(log2(det(Sinit(:,:,n))));
 end
 else
 for n = 1:N
 for i = set_thetaeq(jdx-1):set_thetaeq(jdx-1)+sizeclus(jdx)-1
 Sinit(:,:,n) = Sinit(:,:,n) + H(:,index_start(i):index_end(i),n)*Rxxs{n}{i}*H(:,index_start(i):index_end(i),n)';
 end
 cumrateinit(n) = (1/cb)*real(log2(det(Sinit(:,:,n))));
 end
 end
 u_range = set_thetaeq(jdx):set_thetaeq(jdx)+sizeclus(jdx)-1;
 bu_v=initialbu_v;
 known_vertices = initialinfo; % detailed info of boundary vertices
 bd_vertices = bu_v(u_range); % track critical boundary vertices
 vertices = de2bi(0:2^sizeclus(jdx)-1).*bd_vertices;
 if min(bd_vertices - bu_min(u_range)') >= -conv_tol % achievable w/o time share
 info = known_vertices;
 info.frac = 1;
 info.clusterID = jdx;
 if jdx == 1
 Big_info = info;
 else
 Big_info = [Big_info; info];
 end
 continue;
 end
 bd_V = 1;
 for idx = cumsize(jdx)+1:cumsize(jdx)+sizeclus(jdx)-1 % add more vertices in cluster jdx
 cumrate = zeros(sizeclus(jdx)+1, N);
 cumrate(1,:) = cumrateinit;
 for n = 1:N
 rel_idx = 2;
 S = Sinit(:,:,n);
 for u = u_range
 u_or = order(jdx, u);
 S = S + H(:,index_start(u_or):index_end(u_or),n)*Rxxs{n}{u_or}*H(:,index_start(u_or):index_end(u_or),n)';
 cumrate(rel_idx,n) = (1/cb)*real(log2(det(S)));
 rel_idx = rel_idx + 1;
 end
 end
 bun = initialbun;
 bun(u_range,:) = diff(cumrate);
 bun(order(idx,:),:) = bun;
bu_v = sum(bun, 2)';

bd_V = bd_V + 1;
bd_vertices_extend = [bd_vertices; bu_v(u_range)];
known_vertices = [known_vertices; {bu_v, Rxxs, {Eun}, {bun}, {theta}, {order(idx,end:-1:1)}}];
vertices = [vertices; de2bi(0:2^sizeclus(jdx)-1).*bu_v(u_range)];
tess = convhulln(vertices);
vertices = vertices(unique(tess),:);
bd_vertices = intersect(bd_vertices_extend, vertices, 'rows', 'stable');
tess = convhulln(vertices);

% delete inner vertices
if size(bd_vertices, 1) < bd_V
 to_remove = setdiff(bd_vertices_extend, bd_vertices, 'rows');
 known_vertices(ismember(known_vertices.bu_v(u_range), to_remove, 'rows'),:) = [];
 bd_V = size(bd_vertices, 1);
end

if inhull(bu_min(u_range)', vertices, tess, conv_tol) % bu_min achievable by time-share
 FEAS_FLAG = 2;
 frac = bd_vertices'\bu_min(u_range);
 a_v = find(frac >= err); % active vertices in time-share
 info = known_vertices(a_v, :);
 info.frac = frac(a_v);
 info.clusterID = ones(length(a_v), 1)*jdx;
 bu_a(u_range) = bd_vertices(a_v,:)'*frac(a_v);
 break;
end
end

if jdx == 1
 Big_info = info;
else
 Big_info = [Big_info; info];
end
end

info = Big_info;
bd_V = size(info.bu_v, 1);

% ----------------- RESTORE ORIGINAL ORDER TO ALL -----------------
theta = theta(Jtheta);
temptheta = reshape(cell2mat(info.theta), U, bd_V);
temptheta = temptheta(Jtheta,:);
info.theta= mat2cell(temptheta', [ones(1,bd_V)] , U);
%
tempbun=reshape(cell2mat(info.bun),U,bd_V,N);
tempbun=tempbun(Jtheta,:,:);
tempbun=permute(tempbun,[2 1 3]);
info.bun=mat2cell(tempbun,[ones(1,bd_V)], U , N);
%
tempEun=reshape(cell2mat(info.Eun),U,bd_V,N);
tempEun=tempEun(Jtheta,:,:);
tempEun=permute(tempEun,[2 1 3]);
info.Eun = mat2cell(tempEun, [ones(1, bd_V)], U, N);
%
bu_a = bu_a(Jtheta);
info.bu_v = info.bu_v(:, Jtheta);
%
tmporder = cell2mat(info.order);
tmporder = Itheta(tmporder);
info.order = mat2cell(tmporder, ones(1, bd_V), U);

for tone = 1:N
 Rxxs{tone} = Rxxs{tone}(Jtheta);
end
for u = 1:U
 for n = 1:N
 info.Rxxs{n}{u} = Rxxs{n}{u};
 end
end
toc(tstart)
end

This CVX based program uses two modified versions of the subroutines above as

minPtoneMIMO.m

function [f, bn, Rxxs, En] = minPtoneMIMO(H, Lxu, theta, w)
[Ly, ~] = size(H);
U = length(theta);
if length(Lxu) == 1
 Lxu = ones(1, U) * Lxu;
end
Lxu_max = max(Lxu);
index_end = cumsum(Lxu);
index_start = [1, index_end(1:end-1) + 1];
[stheta, order] = sort(theta, 'descend');
D = eye(U)+diag(-ones(U-1,1),1);
max_bound = max(-diff([stheta;0]));
if max_bound > 1e4
 stheta = stheta/max_bound*1e2;
 w = w/max_bound*1e2;
end

cvx_begin sdp quiet
 cvx_solver mosek
 variable Rxx(Lxu_max,Lxu_max, U) hermitian semidefinite
 expressions Ru(U) En(U) tmp(Ly, Ly)
 tmp = eye(Ly);
 for v = 1:U
 Hv = H(:,index_start(order(v)):index_end(order(v)));
 rxxv = Rxx(1:Lxu(order(v)),1:Lxu(order(v)),order(v));
 tmp = tmp + Hv*rxxv*Hv';
 Ru(v) = 0.5*log_det(tmp);
 En(order(v)) = trace(rxxv);
 end
 minimize (w'*En - Ru'*pos(D*stheta))

end

Rxxs = cell(U,1);
tmp = eye(Ly);
for v = 1:U
 Hv = H(:,index_start(order(v)):index_end(order(v)));
 rxxv = Rxx(1:Lxu(order(v)),1:Lxu(order(v)),order(v));
 tmp = tmp + Hv*rxxv*Hv';
 Ru(v) = 0.5*real(log(det(tmp)));
 Rxxs{order(v)} = rxxv;
 En(order(v)) = trace(rxxv);
end
bn = zeros(U,1);
bv(order) = diff([0;Ru]);
f = -cvx_optval;
end

startEllipse_var_Lxu.m

% function [A, g] = startEllipse_var_Lxu(H, Lxu, bu_min, w)
% This function initializes the ellipsoid method for power minimization
% problem for MAC, with variable number of transmit antennas at each user.
% Called by minPMAC_new program
% function [A, g] = startEllipse_var_Lxu(H, Lxu, bu_min, w)
% H contains the channel matrices as is defined in minPMAC.m, Lxu is
% either a scalar or a length-U vector indicating number of transmit
% antennas of each user. bu_min is the target U by 1 rate vector, w is the
% U by 1 energy weights.
% For all fixed margin WF steps, decoding order is 1,2,...U.
function \([A, g] = \text{startEllipse_var_Lxu}(H, Lxu, bu_min, w)\)

\[
\begin{align*}
\text{[Ly, __}, N] &= \text{size}(H); \\
U &= \text{length}(w); \\
\text{if length}(Lxu) == 1 \\
\quad \text{Lxu} &= \text{ones}(1, U) \times Lxu; \\
\text{end} \\
\text{index_end} &= \text{cumsum}(Lxu); \\
\text{index_start} &= [1, \text{index_end}(1:end-1)+1]; \\
\end{align*}
\]

\[
\begin{align*}
\text{order} &= 1:U; \quad \text{% decoding order, arbitrary} \\
t\text{max} &= \text{zeros}(U, 1); \\
\text{end for u = 1:U} \\
\text{Rxxs} &= \text{cell}(U, N); \\
\text{for u1 = 1:U} \\
\quad \text{for tone = 1:N} \\
\quad \quad \text{Rxxs} \{u1, tone\} &= \text{zeros}(Lxu(u1)); \\
\quad \text{end} \\
\text{end} \\
\text{b} &= \text{bu_min}; \\
\text{b}(u) &= \text{b}(u) + 1; \\
\text{en} &= \text{zeros}(U, N); \\
\text{for u1 = order} \\
\text{M} &= \text{cell}(1, N); \\
\text{gs} &= \text{zeros}(Lxu(u1), N); \\
\text{for tone = 1:N} \\
\quad \text{Rnoise} &= \text{eye}(Ly) + \ldots \\
\quad \text{H(:, [1:index_start(u1)-1,index_end(u1)+1:end], tone)} \ldots \\
\quad \text{bih_diag(Rxxs{[1:u1-1, u1+1:U], tone})} \ldots \\
\quad \text{H(:, [1:index_start(u1)-1,index_end(u1)+1:end], tone)'}; \\
\quad \text{[_h_tmp, M[tone]]} &= \text{svd(Rnoise}^{(-1/2)} \times \text{H(:, index_start(u1):index_end(u1), tone)}, 0); \\
\quad \text{gs(1:length(diag(h_tmp)), tone)} &= \text{diag(h_tmp)}^{^2}; \\
\text{end} \\
\text{[_e_tmp] = fm_water_fill_gn(reshape(gs, 1, []), b(u1)/N, 0);} \\
\text{en_tmp} &= \text{reshape(e_tmp, Lxu(u1), N);} \\
\text{en(u1,:)} &= \text{sum(en_tmp, 1);} \\
\text{for tone = 1:N} \\
\quad \text{Rxxs(1, tone)} &= \text{M}[tone] \times \text{diag(en_tmp(:, tone))} \times \text{M}[tone]'; \\
\text{end} \\
\text{end} \\
\text{t_max(u)} &= w' \times \text{sum(en, 2);} \\
\text{end} \\
\text{g} &= \text{t_max} / 2; \\
\text{A} &= \text{g' \times g' \times eye}(U); \quad \text{% an sphere centered at t_max/2} \\
\end{align*}
\]

This reuses \text{fm_water_fill_gn}, but revises \text{minP_tone} to \text{minP_toneMIMO} and \text{start_Ellipse} to \text{start_Ellipse_var_Lxu}
% function [f, bn, Rxxs, En] = minPtoneMIMO(H, Lxu, theta, w)
% minPtone_cvx_var_Lxu minimizes f = - sum_{u=1}^U \theta_u \cdot b_u +
% \sum_{u=1}^U w_u \cdot e_u
% subject to b \in C_g(H,e). This program uses cvx package and mosek solver
%
% the inputs are:
% 1) H, an Ly by Lx channel matrix. Ly is the number of receiver antennas,
% Lx is the total number of transmit antennas.
% H(:,index_start(u):index_end(u)) is the channel for user u.
% 2) Lxu, a scalar or a length-U vector containing the number of transmit
% antennas of each user. If Lxu is a scalar, each user has Lxu antennas
% 3) \theta, a U by 1 vector containing the weights for the rates.
% 4) w, a U by 1 vector containing the weights for each user's energy.
%
% the outputs are:
% 1) f, -1 * minimum value (or maximum value of the -1 * function).
% 2) bn, a U by 1 vector containing the rates for each user
% that optimizes the given function.
% 3) Rxxs, a 1 by U cell array containing the Rxx's for each user that
% optimizes the given function.
% 4) En, a U by 1 vector containing the energy of each user;

function [f, bn, Rxxs, En] = minPtoneMIMO(H, Lxu, theta, w)

[Ly, ~] = size(H);
U = length(theta);
if length(Lxu) == 1
 Lxu = ones(1,U)*Lxu;
end
Lxu_max = max(Lxu);
index_end = cumsum(Lxu);
index_start = [1,index_end(1:end-1)+1];

[stheta, order] = sort(theta, 'descend');
D = eye(U)+diag(-ones(U-1,1),1);
max_bound = max(-diff([stheta;0]));
if max_bound > 1e4
 stheta = stheta/max_bound*1e2;
 w = w/max_bound*1e2;
end

% cvx_begin sdp quiet
% cvx_solver mosek

variable Rxx(Lxu_max,Lxu_max, U) hermitian semidefinite
expressions Ru(U) En(U) tmp(Ly, Ly)
tmp = eye(Ly);
for v = 1:U
 Hv = H(:,index_start(order(v)):index_end(order(v)));
 rxxv = Rxx(1:Lxu(order(v)),1:Lxu(order(v)),order(v));
 tmp = tmp + Hv*rxxv*Hv';
 Ru(v) = 0.5*log_det(tmp);
 En(order(v)) = trace(rxxv);
end
minimize (w'*En - Ru'*pos(D*stheta))
%
% cvx_end
Rxxs = cell(U,1);
tmp = eye(Ly);
for v = 1:U
 Hv = H(:,index_start(order(v)):index_end(order(v)));
 rxxv = Rxx(1:Lxu(order(v)),1:Lxu(order(v)),order(v));
 tmp = tmp + Hv*rxxv*Hv';
 Ru(v) = 0.5*real(log(det(tmp)));
 Rxxs{order(v)} = rxxv;
 En(order(v)) = trace(rxxv);
end
bn = zeros(U,1);
bn(order) = diff([0;Ru]);
f = -cvx_optval;
end

% function [A, g] = startEllipse_var_Lxu(H, Lxu, bu_min, w)
% This function initializes the ellipsoid method for power minimization
% problem for MAC, with variable number of transmit antennas at each user.
% Called by minPMAC_new program
% function [A, g] = startEllipse_var_Lxu(H, Lxu, bu_min, w)
% H containes the channel matrices as is defined in minPMAC.m, Lxu is
% either a scalar or a length-U vector indicating number of transmit
% antennas of each user. bu_min is the target U by 1 rate vector, w is the
% U by 1 energy weights.
% For all fixed margin WF steps, decoding order is 1,2,...U.
% A is the matrix describing the starting ellipsoid and g is its center
% **
function [A, g] = startEllipse_var_Lxu(H, Lxu, bu_min, w)

[Ly, ~, N] = size(H);
U = length(w);
if length(Lxu) == 1
 Lxu = ones(1,U)*Lxu;
end
index_end = cumsum(Lxu);
index_start = [1,index_end(1:end-1)+1];

order = 1:U; % decoding order, arbitrary
tmax = zeros(U,1);

for u = 1:U
 Rxxs = cell(U,N);
 for u1 = 1:U
 for tone = 1:N
 Rxxs{u1,tone} = zeros(Lxu(u1));
 end
 end
 b = bu_min;
b(u) = b(u) + 1;
en = zeros(U, N);
for u1 = order
 M = cell(1,N);
gs = zeros(Lx(u1), N);
for tone = 1:N
 Rnoise = eye(Ly) +
 H(:,:,[1:index_start(u1)-1,index_end(u1)+1:end],tone)...
 * blkdiag(Rxxs{[1:u1-1,u1+1:U], tone})...
 * H(:,:,[1:index_start(u1)-1,index_end(u1)+1:end],tone)';
 [~, h_tmp, M{tone}] = svd(Rnoise^(-1/2)*H(:,:,index_start(u1):index_end(u1),tone),0);
gs(1:length(diag(h_tmp)),tone) = diag(h_tmp).^2;
end
[~, e_tmp] = fmwaterfill_gn(reshape(gs,1,[]), b(u1)/N, 0);
en_tmp = reshape(e_tmp, Lx(u1), N);
en(u1,:) = sum(en_tmp, 1);
for tone = 1:N
 Rxxs{u1,tone} = M{tone}*diag(en_tmp(:,tone))*M{tone}';
end
end
tmax(u) = w'* sum(en,2);
end

g = tmax / 2;
A = g'*g*eye(U); % an sphere centered at tmax/2

admMAC.m

% function [FEAS_FLAG, bu_a, info] = admMAC_cvx(H, Lxu, bu, Eu, cb)
% admMAC_rate_region determines whether the target rate vector bu is
% feasible for (noise-whitened) channel H and energy/symbol Eu via rate region
% Input arguments:
% - H: Ly-by-Lx-by-N channel matrix. H(:,:,n) denotes the channel for
% the n-th tone.
% - Lxu: number of transmit antennas of each user. It can be either a
% scalar or a length-U vector. If it is a scalar, every user has
% Lxu transmit antennas; otherwise user u has Lxu(u) transmit
% antennas.
% - bu: target rate of each user, length-U vector.
% - Eu: Energy/symbol on each user, length-U vector.
% Outputs:
% - FEAS_FLAG: indicator of achievability. FEAS_FLAG=0 if the target
% is not achievable; FEAS_FLAG=1 if the target is achievable by a
% single ordering; FEAS_FLAG=2 if the target is achievable by
% time-sharing
% - bu_a: U-by-1 vector showing achieved sum rate of each user.
% - info: various length output depending on FEAS_FLAG
% --if FEAS_FLAG=0: empty
% --if FEAS_FLAG=1: 1-by-5 cell array containing
% {Rxxs, Eun, bun, theta, w} corresponds to the single vertex
% --if FEAS_FLAG=2: v-by-7 cell array, with each row representing
% a time-shared vertex \{Rxxs, Eun, bun, theta, w, frac, cluster\}
%
% info's row entries in detail (one row for each vertex shared
% - Rxxs: U-by-N cell array containing Rxx(u,n)'s if Lxu is a
% length-U vector; or Lxu-by-Lxu-by-U-by-N tensor if Lxu is a
% scalar. If the rate target is infeasible, output 0.
% - Eun: U-by-N matrix showing users' transmit energy on each tone.
% If infeasible, output 0.
% - bun: U-by-N matrix showing users' rate on each tone. If
% infeasible, output 0.
% - theta: U-by-1 Lagrangian multiplier w.r.t. target rates
% - w: U-by-1 Lagrangian multiplier w.r.t. energy constraints
% - order: U-by-1 user order
% - frac: fraction of dimensions for each vertex in time share (FF =2
% ONLY), per cluster
% -- cluster 1 has largest common-theta, cluster 2 has second largest
% common-theta group, and so on
%
% Subroutines called
% - maxRMAC_cvx
% - maxRMACMIMO

%**
function [FEAS_FLAG, bu_a, info] = admMAC(H, Lxu, bu, Eu, cb)
% start = tic;
[Ly, ~, N] = size(H);
E = reshape(Eu,[],1);
bu = reshape(bu,[],1);
%Rxxs = cell(1,N);
U = length(Eu);
bu_a=zeros(1,U);
theta = ones(U,1);
A = eye(U)*U;
count = 1;
% error tolerance
err = 1e-6;
% tolerance of convex hull boundary
conv_tol = 1e-6;
FEAS_FLAG=0;

if max(Lxu) == 1
 SCALAR_FLAG = 1;
 [Eun, w, bun] = maxRMAC_cvx(H, Eu, theta, cb);
 Rxxstemp=cell(1,N);
 for tone=1:N
 Rxxstemp{tone} = num2cell(Eun(:,tone));
 end
else
 SCALAR_FLAG = 0;
 [Rxxs, Eun, w, bun] = maxRMACMIMO(H, Lxu, Eu, theta, cb);
 Rxxstemp=Rxxs;
end

% achieved users' rates
bu_v = sum(bun, 2)';
g = bu_v' - bu;

if theta'*g < -err % infeasible criterion
 FEAS_FLAG = 0;
 bu_a = 0;
 info = [];
 return
end

if sqrt(g'*A*g) <= err || min(g) >= 0 % achievable by current vertex
 FEAS_FLAG = 1;
 bu_a = bu_v';
 info = table(bu_v, Rxxstemp, {Eun}, {bun}, {theta}, {w}); % detailed info of boundary vertices
 info.Properties.VariableNames(2:end) = {'Rxxs' 'Eun' 'bun' 'theta' 'w'};
 return
end

% add the first vertex
known_vertices = table(bu_v, Rxxstemp, {Eun}, {bun}, {theta}, {w}); % detailed info of boundary vertices
known_vertices.Properties.VariableNames(2:end) = {'Rxxs' 'Eun' 'bun' 'theta' 'w'};
bd_vertices = bu_v; % track critical boundary vertices
bd_V = 1; % track number of critical boundary vertices
vertices = de2bi(0:2^U-1).*bu_v; % all boundary vertices
tess = convhulln(vertices);

while 1
 count = count + 1;
 bu_min = bu;

 % update ellipsoid
 tmp = A*g/sqrt(g'*A*g);
 theta = theta - 1/(U + 1)*tmp;
 A = U^2/(U^2 - 1) * (A - 2/(U + 1)*(tmp*tmp'));
 ind = find(theta < zeros(U, 1));
 while ~isempty(ind) % helps numerically, as thetas > 0
 g = zeros(U, 1);
 g(ind(1)) = -1;
 tmp = A*g/sqrt(g'*A*g);
 theta = theta - 1/(U + 1)*tmp;
 A = U^2/(U^2 - 1) * (A - 2/(U + 1)*(tmp*tmp'));
 ind = find(theta < zeros(U, 1));
 end

 % ------------------------ next vertex ----------------
 % this next vertex must use the new theta's order
 % get the next vertex
 if SCALAR_FLAG
 [Eun, w, bun] = maxRMAC_cvx(H, Eu, theta, cb);
 Rxxs = Eun;
 Rxxstemp = cell(1, N);
 for tone=1:N
 Rxxstemp{tone} = num2cell(Eun(:, tone));
 end
 end

```
else
    % [Rxxs, Eun, w, bun] = maxRMAC_vector_cvx(H, Lxu, Eu_now, theta, cb);
    [Rxxs, Eun, w, bun] = maxRMACMIMO(H, Lxu, Eu_now, theta, cb);
    Rxxstemp = Rxxs;
end

bu_v = sum(bun, 2)';
g = bu_v' - bu;
bu_a = bu_v;

if theta'*g < -err % infeasible criteria
    FEAS_FLAG = 0;
    bu_a = bu_v';
    info = {};
    return
end

if sqrt(g'*A*g) <= err || min(g) >= 0 % achievable by current vertex
    FEAS_FLAG = 1;
    bu_a = bu_v';
    info = table(bu_v, Rxxstemp, {Eun}, {bun}, {theta}, {w}); % detailed info of boundary vertices
    info.Properties.VariableNames(2:end) = {'Rxxs' 'Eun' 'bun' 'theta' 'w'};
    return
end

%---------------------TWO OR MORE EQUAL-THETA USERS---------------------
% This point of while loop is only reached if there are equal-theta users.
% This section then vertex shares for the equal-theta clusters.
% Only equal-theta users vertices' rate subsets are evaluated.
% sizeset is the size of a cluster = # of equal-theta users
% There is no need for U! orders to be searched (which is usually a much larger number, just the sizeclus within each cluster, while sizeset+1 is the total number of orders that are searched (over all clusters).
% order and invorder change with respect to Itheta and Jtheta ONLY within the clusters so that different vertices can be shared to get the correct data rate bu_min (bu input) instead of just sum(bu_min)
% form clusters with equal-theta users and check if each cluster's sum(bu_min) achieves the target rates
flagadd = 1; % whether the current vertex / cluster of vertex should be added
[stheta, Itheta] = sort(theta, 'descend');
 [~, Jtheta] = sort(Itheta);
delta = -diff([stheta; 0]);
spots = delta < max(err, 1e-2*norm(theta));
spots(end) = 0;

sizeclus = []; % size of each cluster
numclus = 0;  % number of clusters (>1 equal-theta groups)
set_thetaeq = [];  % index of the first entry of each cluster

flagclus = 0;
for i = 1:U
    if spots(i) && ~flagclus  % create a new set
        numclus = numclus + 1;
        set_thetaeq = [set_thetaeq, i];
        sizeclus = [sizeclus, 1];
        flagclus = 1;
    elseif spots(i)  % add user to an existing set
        sizeclus(end) = sizeclus(end) + 1;
    elseif flagclus  % last user to add
        sizeclus(end) = sizeclus(end) + 1;
        flagclus = 0;
        us = Itheta(set_thetaeq(end):set_thetaeq(end)+sizeclus(end)-1);
        if sum(bu_v(us) - bu(us)') < -err*length(us)
            flagadd = 0;
            break
        end
    else  % user not in a cluster
        flagclus = 0;
        if bu_v(Itheta(i)) - bu(Itheta(i)) < -err
            flagadd = 0;
            break
        end
    end
end

if ~flagadd  % continue to next iteration with update theta
    continue
end

% --------- REORDER USERS ACCORDING TO THETA ---------
% This ordering will need eventually to be reversed before returning from
% this function.
% theta = theta(Jtheta) reverses this sort later.
bu_a = bu_a(Itheta);
bu_v = bu_v(Itheta);
bun = bun(Itheta,:);
Eun = Eun(Itheta,:);
bu_min = bu_min(Itheta);
index_end = cumsum(Lxu);
index_start = [1, index_end(1:end-1)+1];
hidx = [];
for i = Itheta'
    hidx = [hidx, index_start(i):index_end(i)];
end
Lxu = Lxu(Itheta);
index_end = cumsum(Lxu);
index_start = [1, index_end(1:end-1)+1];
H = H(:,hidx,:);
for tone = 1:N
    Rxxstemp{tone} = Rxxstemp{tone}(Itheta);
end
% ----------- CREATE INFO TABLE & ADD FIRST VERTEX -----------
initialbu_v = bu_v; % save this value as it is needed if more than 1 cluster
initialbun = bun;
firstvertices = de2bi(0:2^U-1).*initialbu_v;

bu_a = bu_v;
initialinfo = table(bu_v, Rxxstemp, {Eun}, {bun}, {theta}, {U:-1:1}); % detailed info of boundary vertices
initialinfo.Properties.VariableNames(2:end) = {'Rxxs' 'Eun' 'bun' 'theta' 'order'};

info = table(bu_v, Rxxstemp, {Eun}, {bun}, {theta}, {U:-1:1}); % detailed info of boundary vertices
info.Properties.VariableNames(2:end) = {'Rxxs' 'Eun' 'bun' 'theta', 'order'};

% format the clusters and permuted orders
order = repmat(1:U, sum(sizeclus-1),1);
cumsize = cumsum([0, sizeclus-1]);
for jdx = 1:numclus
    u_range = set_thetaeq(jdx):set_thetaeq(jdx)+sizeclus(jdx)-1; % users in cluster jdx
    for i = 1:sizeclus(jdx)-1
        order(cumsize(jdx)+i, u_range) = circshift(u_range, i); % all permuted orders (excluding 1,2,...U in each cluster)
    end
end

% ---- For each cluster --------
for jdx=1:numclus
    FEAS_FLAG = 0;
    if jdx == 1
        Sinit = repmat(eye(Ly),1,1,N);
        cumrateinit = zeros(1, N);
        for n = 1:N
            for i = 1:set_thetaeq(1)-1
                Sinit(:,:,n) = Sinit(:,:,n) + H(:,index_start(i):index_end(i),n)*Rxxstemp{n}{i}*H(:,index_start(i):index_end(i),n)';
            end
            cumrateinit(n) = (1/cb)*real(log2(det(Sinit(:,:,n))));
        end
    else
        for n = 1:N
            for i = set_thetaeq(jdx-1):set_thetaeq(jdx-1)+sizeclus(jdx)-1
                Sinit(:,:,n) = Sinit(:,:,n) + H(:,index_start(i):index_end(i),n)*Rxxstemp{n}{i}*H(:,index_start(i):index_end(i),n)';
            end
            cumrateinit(n) = (1/cb)*real(log2(det(Sinit(:,:,n))));
        end
    end
    u_range = set_thetaeq(jdx):set_thetaeq(jdx)+sizeclus(jdx)-1;
    bu_v = initialbu_v;
    known_vertices = initialinfo; % detailed info of boundary vertices
    bd_vertices = bu_v(u_range); % track critical boundary vertices
    vertices = de2bi(0:2^sizeclus(jdx)-1).*bd_vertices;
    if min(bd_vertices - bu_min(u_range)) >= -conv_tol % achievable w/o time share
        info = known_vertices;
        info.frac = 1;
        info.clusterID = jdx;
    end
end
if idx == 1
    Big_info = info;
else
    Big_info = [Big_info; info];
end
continue;
end
bd_V = 1;
for idx = cumsize(jdx)+1:cumsize(jdx)+sizeclus(jdx)-1 % add more vertices in cluster jdx
cumrate = zeros(sizeclus(jdx)+1, N);
cumrate(1,:) = cumrateinit;
for n = 1:N
    rel_idx = 2;
    S = Sinit(:,:,n);
    for u = u_range
        u_or = order(jdx, u);
        S = S + H(:,index_start(u_or):index_end(u_or),n)*Rxxstemp{n}{u_or}*H(:,index_start(u_or):index_end(u_or),n)';
        cumrate(rel_idx,n) = (1/cb)*real(log2(det(S)));
        rel_idx = rel_idx + 1;
    end
end
bun = initialbun;
bun(u_range,:) = diff(cumrate);
bun(order(idx,:,:),:) = bun;
bu_v = sum(bun, 2)';
bd_V = bd_V + 1;
bd_vertices_extend = [bd_vertices; bu_v(u_range)];
known_vertices = [known_vertices; {bu_v, Rxxstemp, {Eun}, {bun}, {theta}, {order(idx,end:-1:1)}}, vertices = [vertices; de2bi(0:2^sizeclus(jdx)-1).*bu_v(u_range)];
tess = convhulln(vertices);
vertices = vertices(unique(tess),:);
bd_vertices = intersect(bd_vertices_extend, vertices, 'rows', 'stable');
tess = convhulln(vertices);
% delete inner vertices
if size(bd_vertices, 1) < bd_V
to_remove = setdiff(bd_vertices_extend, bd_vertices, 'rows');
known_vertices(ismember(known_vertices.bu_v(u_range), to_remove, 'rows'),:) = [];
bd_V = size(bd_vertices, 1);
end
if inhull(bu_min(u_range)', vertices, tess, conv_tol) % bu_min achievable by time-share
    FEAS_FLAG = 2;
    frac = bd_vertices'\bu_min(u_range); % TODO: change this
    a_v = find(frac >= err); % active vertices in time-share
    info = known_vertices(a_v, :);
    info.frac = frac(a_v);
    info.frac = info.frac/sum(info.frac);
    info.clusterID = ones(length(a_v), 1)*jdx;
    bu_a(u_range) = bd_vertices(a_v,:)'*info.frac;
    break;
end
end
if FEAS_FLAG == 0

1091
break;
end

% write big info table
if jdx == 1
    Big_info = info;
else
    Big_info = [Big_info; info];
end
end
if FEAS_FLAG ~= 0
    break;
end
end

info = Big_info;
bd_V = size(info.bu_v, 1);

% ----------- RESTORE ORIGINAL ORDER TO ALL -----------
theta = theta(Jtheta);
tempttheta = reshape(cell2mat(info.theta), U, bd_V);
tempttheta = tempbun(Jtheta,:);
info.theta= mat2cell(tempptheta', [ones(1,bd_V)] , U);

% tempbun=reshape(cell2mat(info.bun),U,bd_V,N);
tempbun=tempbun(Jtheta,:);
tempbun=permute(tempbun,[2 1 3]);
info.bun=mat2cell(tempbun,[ones(1,bd_V)], U , N);

% tempEun=reshape(cell2mat(info.Eun),U,bd_V,N);
tempEun=tempEun(Jtheta,:);
tempEun=permute(tempEun,[2 1 3]);
info.Eun=mat2cell(tempEun,[ones(1,bd_V)], U , N);

bu_a = bu_a(Jtheta);
info.bu_v=info.bu_v(:,Jtheta);

% tmporder = cell2mat(info.order);
tmporder = Itheta(tmporder);
info.order = mat2cell(tmporder, ones(1,bd_V), U);

for tone=1:N
    Rxxstemp{tone}= Rxxstemp{tone}(Jtheta);
end
for u=1:U
    for n=1:N
        info.Rxxs{n}{u}=Rxxstemp{n}{u};
    end
end
toc(tstart)
end
function [FEAS_FLAG, bu_a, info] = admMAC_rate_region(H, Lxu, bu, Eu)
% admMAC_rate_region determines whether the target rate vector bu is 
% feasible for (noise-whitened) channel H and energy/symbol Eu via rate region
% Input arguments:
% - H: Ly-by-Lx-by-N channel matrix. H(:,:,n) denotes the channel for 
% the n-th tone.
% - Lxu: number of transmit antennas of each user. It can be either a 
% scalar or a length-U vector. If it is a scalar, every user has 
% Lxu transmit antennas; otherwise user u has Lxu(u) transmit 
% antennas.
% - bu: target rate of each user, length-U vector.
% - Eu: Energy/symbol on each user, length-U vector.
% Outputs:
% - FEAS_FLAG: indicator of achievability. FEAS_FLAG=0 if the target 
% is not achievable; FEAS_FLAG=1 if the target is achievable by a 
% single ordering; FEAS_FLAG=2 if the target is achievable by 
% time-sharing 
% - bu_a: U-by-1 vector showing achieved sum rate of each user.
% - info: various length output depending on FEAS_FLAG
% --if FEAS_FLAG=0: empty
% --if FEAS_FLAG=1: 1-by-5 cell array containing 
% {Rxxs, Eun, bun, theta, w} corresponds to the single vertex 
% --if FEAS_FLAG=2: v-by-6 cell array, with each row representing 
% a time-shared vertex {fraction, Rxxs, Eun, bun, theta, w} 
% %
% - Rxxs: U-by-N cell array containing Rxx(u,n)'s if Lxu is a 
% length-U vector; or Lxu-by-Lxu-by-U-by-N tensor if Lxu is a 
% scalar. If the rate target is infeasible, output 0.
% - Eun: U-by-N matrix showing users' transmit power on each tone. 
% If infeasible, output 0.
% - bun: U-by-N matrix showing users' rate on each tone. If 
% infeasible, output 0.
% - theta: U-by-1 Lagrangian multiplier w.r.t. target rates 
% - w: U-by-1 Lagrangian multiplier w.r.t. power constraints
function [FEAS_FLAG, bu_a, info] = admMAC_rate_region(H, Lxu, bu, Eu)
[Ly, ~, N] = size(H);
if N == 1
    H = reshape(H,Ly,[],1);
end
Eu = reshape(Eu,[],1);
bu = reshape(bu,[],1);
U = length(Eu);
theta = ones(U,1);
A = eye(U)*U;
count = 1
% error tolerance
err = 1e-6;
% tolerance of convex hull boundary
conv_tol = 1e-6;

if max(Lxu) == 1
SCALAR_FLAG = 1;
[Eun, w, bun] = maxRMAC_cvx(H, Eu, theta);
Rxxs = Eun;
else
SCALAR_FLAG = 0;
[Rxxs, Eun, w, bun] = maxRMAC_vector_cvx(H, Lxu, Eu, theta);
end

% achieved users' rates
bu_v = sum(bun,2)';
g = bu_v' - bu;

if theta'*g < -err % infeasible criterion
FEAS_FLAG = 0;
bu_a = bu_v';
info=[];
return
end

if sqrt(g'*A*g) <= err || min(g) >= 0 % achievable by current vertex
FEAS_FLAG = 1;
bu_a = bu_v';
info = table(bu_v, {Rxxs}, {Eun}, {bun}, {theta}, {w}); % detailed info of boundary vertices
info.Properties.VariableNames(2:end) = {'Rxxs' 'Eun' 'bun' 'theta' 'w'};
return
end

% add the first vertex
known_vertices = table(bu_v, {Rxxs}, {Eun}, {bun}, {theta}, {w}); % detailed info of boundary vertices
known_vertices.Properties.VariableNames(2:end) = {'Rxxs' 'Eun' 'bun' 'theta' 'w'};
bd_vertices = bu_v; % track critical boundary vertices
bd_V = 1; % track number of critical boundary vertices
vertices = de2bi(0:2^U-1).*bu_v; % all boundary vertices
tess = convhulln(vertices);

while 1
count = count + 1

% update ellipsoid
tmp = A*g/sqrt(g'*A*g);
theta = theta - 1/(U + 1)*tmp;
A = U^-2/(U^-2 - 1) * (A - 2/(U + 1)*(tmp*tmp'));
ind = find(theta < zeros(U,1));
while isempty(ind)
g = zeros(U,1);
g(ind(1)) = -1;
tmp = A*g/sqrt(g'*A*g);
theta = theta - 1/(U + 1)*tmp;
A = U^-2/(U^-2 - 1) * (A - 2/(U + 1)*(tmp*tmp'));
ind = find(theta < zeros(U,1));
end

% get the next vertex
if SCALAR_FLAG
[Eun, w, bun] = maxRMAC_cvx(H, Eu, theta);
Rxxs = Eun;
else
    [Rxxs, Eun, w, bun] = maxRMAC_vector_cvx(H, Lxu, Eu, theta);
end
% achieved users' rates
bu_v = sum(bun,2)';
g = bu_v' - bu;
if theta'*g < -err % infeasible criteria
    FEAS_FLAG = 0;
    bu_a = bu_v';
    info = {};
    break
end
if sqrt(g'*A*g) <= err || min(g) >= 0 % achievable by current vertex
    FEAS_FLAG = 1;
    bu_a = bu_v';
    info = {Rxxs, Eun, bun, theta, w};
    break
end
if ~inhull(bu_v, vertices, tess, conv_tol)
    % add new vertices and build new convex hull
    known_vertices = [known_vertices; {bu_v, {Rxxs}, {Eun}, {bun}, {theta}, {w}}];
    bd_vertices_extend = [bd_vertices; bu_v];
    bd_V = bd_V + 1;
    new_vs = de2bi(0:2^U-1).*bu_v;
    vertices = [vertices;new_vs];
    tess = convhulln(vertices);
    % keep only the vertices at the boundary of convex hull
    vertices = vertices(unique(tess),:);
    bd_vertices = intersect(bd_vertices_extend, vertices, 'rows');
    tess = convhulln(vertices);
    % delete inner vertices
    if size(bd_vertices, 1) < bd_V
        to_remove = setdiff(bd_vertices_extend, bd_vertices, 'rows');
        known_vertices(ismember(known_vertices.bu_v, to_remove, 'rows'),:) = [];
        bd_V = size(bd_vertices, 1);
    end
end
if inhull(bu', vertices, tess, conv_tol) % achievable by time-share
    FEAS_FLAG = 2;
    cvx_begin quiet % compute time-share combination
        variable frac(bd_V) nonnegative
        minimize norm(frac,1)
        subject to
            sum(frac) <= 1;
            bd_vertices'*frac == bu;
    cvx_end
    active_idx = find(frac>=err);
    a_v = bd_vertices(active_idx,:);
    a_frac = frac(active_idx);
    [tab_pos,frac_loc] = ismember(known_vertices.bu_v, a_v,'rows');
info = known_vertices(tab_pos,:);
info.frc = a_frac(frac_loc);
bu_a = bu;
break
end
end

G.5.3 Section 5.5 Duality Programs and BC programs

mac2bc.m

function Rxxb = mac2bc(Rxxm, Hmac, N)

% This function converts U users' MAC autocorrelation matrices to dual BC
% autocorrelation matrices. These output matrices achieve the same set of
% rates in the dual BC by a lossless precoder. The user should order the
% inputs Rxxm and Hmac (see below) so that they have the desired order
% already.
%
% Inputs
% Rxxm - an Lx x Lx x U array of users' autocorrelation matrices
% corresponding to [U:-1:1]=order
% Hmac - the Ly x Lx x U MAC channel for with users listed U...1, from left
%
% Output
% Rxxb - Ly Ly x U dual BC's output autocorrelation matrix, which has the
% left user in order reversed (order *J) at top/left in Rxxb.
%
% function Rxxb = mac2bc(Rxxm, Hmac)

[Ly, Lx, U] = size(Hmac);

% These two following lines just set index u to same as textbook
% because matlab has reversed order with respect to textbook

Hmac = Hmac(:,:,:,[U:-1:1]); % reversing to matlab's order
Rxxm = Rxxm(:,:,:,[U:-1:1]); % reversing to matlab's order
J = hankel([zeros(Ly-1,1);1],[1 zeros(1,Ly-1)]);

% the following algorithm uses u like in the textbook
Rxxbtot = zeros(Ly,Ly);

% Gtot is the transmit covariance matrix of the BC

B = zeros(Ly,Ly,U);
A = zeros(Lx,Lx,U);

% A and B matrices are the Rtildenoise for BC and MAC respectively

B(:,:,U) = eye(Ly);
for k = U:-1:2
    B(:,:,k-1) = B(:,:,k) + Hmac(:,:,k)*Rxxm(:,:,k)*Hmac(:,:,k)';
end
A(:,:,1) = eye(Lx);
for k = 1:U
    temp_A = inv(sqrtm(A(:,:,k))); %sqrtm provides transpose of text’s matrix sq root
    temp_B = inv(sqrtm(B(:,:,k)));
    [F L M] = svd(temp_B' * Hmac(:,:,k) * temp_A', 'econ');
    Rxxb(:,:,k) = temp_B' * F * M' * sqrtm(A(:,:,k)) * Rxxm(:,:,k) * sqrtm(A(:,:,k))' * M * F' * temp_B;
    Rxxbtot = Rxxbtot + Rxxb(:,:,k);
    if k~=U % the Jy matrix is not necessary because Rxxbtot is already in that
        A(:,:,k+1) = eye(Lx) + Hmac(:,:,k+1)'* Rxxbtot * Hmac(:,:,k+1);
    end
end

bc2mac.m

% function Rxxm = bc2mac(Rxxb, Hmac)
%
% This function converts the BC autocorrelation matrices set in Rxxb to the
% corresponding set of autocorrelation matrices to Rxxm of a dual MAC.
%
% The command Hbc=conj(permute(Hmac(:,:,end:-1:1),[2 1 3])), where
% generates the Hbc if needed for any reason.
%
% U = number of users, which is obtained from the 3rd dimension of the input
% tensor Hmac. Lx and Ly correspond to this (dual) MAC that has Ly receive
% antennas and Lx transmit antennas per user. Variable Lxu (so Lyu on Rxxb)
% needs to find maximum over u, and extend all by zero columns in Hmac and
% zeroed rows and columns in Rxxb.
%
% The output Rxxm user order is reversed restored) by this program.
%
% Inputs
%
% Rxxb is an Ly by Ly by U array containing the BC input Rxx(u) matrices.
% where Rxxb(:,:,u) is the autocorrelation matrix for BC user u.
% The overall autocorrelation matrix Rxxbsum is sum(Rxxb,3), but not
% output.
%
% Hmac is an Ly x Lx x U MAC channel matrix that for which the dual BC is
% computed internally. Hmacu(:,:,u) is user u’s noise-whitened
% equivalent channel matrix.
%
% Output
% Rxxm contains the MAC autocorrelation matrices, which are $L_y \times L_y \times U$.
% Rxxm(:, :, u) is user u’s autocorrelation matrix, reversed in order from
% the meaning of u in the input Rxxb.
%
% function Rxxm = bc2mac(Rxxb, Hmac)

[Ly, ~, U] = size(Hmac); % temp, 1, 2 help in debugging, could be ~
% [Ly, temp1, temp2] = size(Rxxb);
H = conj(permute(Hmac(:, :, end:-1:1), [2 1 3])); % computes dual BC
[Lx, ~, ~] = size(H);

% Rxxbsum is the transmit covariance matrix of the BC

B = zeros(Ly, Ly, U); % MAC's noise plus crosstalk
A = zeros(Lx, Lx, U); % BC's noise plus crosstalk
Rxxm = zeros(Ly, Ly, U);
Rxxbsum = zeros(Lx, Lx);

% construct the BC autocorrelation matrices cummulative sums
A(:, :, 1) = eye(Lx);
for u = 1:U-1
    Rxxbsum = Rxxbsum + Rxxb(:, :, u);
    A(:, :, u+1) = eye(Lx) + H(:, :, u+1) * Rxxbsum * H(:, :, u+1)';
end
B(:, :, U) = eye(Ly);
Hmac = Hmac(:, :, U:-1:1); % align Hmac order with matlab

B(:, :, U) = eye(Ly);
Hmac = Hmac(:, :, U:-1:1); % align Hmac order with matlab

for u = U:-1:1;
    temp_A = pinv(sqrtm(A(:, :, u))); % sqrtm provides conjugate transpose of text's square root
    temp_B = pinv(sqrtm(B(:, :, u)));
    [F L M] = svd(temp_B' * Hmac(:, :, u) * temp_A', 'econ'); % Hcheck inside svd

    Rxxm(:, :, u) = temp_A * M * F' * sqrtm(B(:, :, u)) * sqrtm(B(:, :, u)) * F' * M; % temp_
    if u == 1
        B(:, :, u-1) = B(:, :, u) + Hmac(:, :, u) * Rxxm(:, :, u) * Hmac(:, :, u)';
    end
end

Rxxm(:, :, U:-1:1) = Rxxm; % restoring user U at top

Maximum E-sum MAC sum rate program macmax.m

% function [Rxx, bsum, bsum_lin] = macmax(Esum, h, Lxu, N, cb)
% Simultaneous water-filling Esum MAC max rate sum (linear & nonlinear GDFE)
% The input is space-time domain h, and the user can specify a temporal
% block symbol size N (essentially an FFT size).
% This program uses the CVX package
% the inputs are:
% Esum The sum-user energy/SAMPLE scalar in time-domain.
% This will be increased by cb*N by this program.
% Each user energy should be scaled by N/(N+nu) if there is cyclic prefix
% This energy is the trace of the corresponding user Rxx (u)
% The sum energy is computed as the sum of the Eu components
% internally.
% h The TIME-DOMAIN Ly x sum(Lx(u)) x N channel for all users
% Lxu The number of antennas for each user 1 x U
% N The FFT size (equally spaced over (0,1/T) at 1/(NT)).
% cb cb = 1 for complex, cb=2 for real baseband
%
% the outputs are:
% Rxx A block-diagonal psd matrix with the input autocorrelation for each
% user on each tone. Rxx has size (sum(Lx(u)) x sum(Lx(u)) x N .
% sum trace(Rxx) over tones and spatial dimensions equal the Eu
% FREQUENCY DOMAIN
% bsum the maximum rate sum, when cb=2, this is effectively over lower half
% of tones, or equivalently the 1/2*log2 form of data rates are summed
% bsum bsum_lin - the maximum sum rate with a linear receiver
% b is an internal convergence (vector, rms) value, but not sum rate

function [Rxx, bsum, bsum_lin] = macmax(Esum, h, Lxu, N, cb)

H = fft(h, N, 3); % scaled so that N factor no longer needed in rate calculation
[Ly, Lx, ~] = size(H);  
Esum=cb*N*Esum;
if numel(Lxu) > 1
    U = numel(Lxu);
    if sum(Lxu)==Lx
        error('mismatch between sum of Lxu and Lx');
    end
elseif (Lx/Lxu)~= floor(Lx/Lxu)
    error('invalid Lxu');
else
    U = Lx/Lxu;
    Lxu = Lxu*ones(1,U);
end

idx_end = cumsum(Lxu);
idx_start = [1, idx_end(1:end-1)+1];
idx_exp_end = N*idx_end;
idx_exp_start = [1, idx_exp_end(1:end-1)+1];

Hcell=mat2cell(H, Ly, Lxu, ones(1,N));
Hexpand = zeros(N*Ly,N*Lx);
for u = 1:U
    Hexpand(:,idx_exp_start(u):idx_exp_end(u)) = blkdiag(Hcell{1,u,:});
end

Lxu_max = max(Lxu);

variable Rxxun(Lxu_max,Lxu_max,N,U) hermitian semidefinite

1099
Rxxun_cell = reshape(num2cell(Rxxun, [1,2,3]), 1, U);
for u = 1:U
  Rxxun_cell{u} = Rxxun_cell{u}(1:Lxu(u), 1:Lxu(u),:);
  Rxxun_cell{u} = reshape(num2cell(Rxxun_cell{u},[1,2]), 1, N);
end
Rxxun_cell = [Rxxun_cell{:}];
Rxx = blkdiag(Rxxun_cell{:});
maximize (1/cb*log2(exp(1))*log_det(eye(N*Ly) + Hexpand*Rxx*Hexpand'))
subject to
  trace(Rxx) <= Esum;
cvx_end

bsum=cvx_optval;

Rxxun_cell = reshape(num2cell(Rxxun, [1,2,3]), U, 1);
for u = 1:U
  Rxxun_cell{u} = Rxxun_cell{u}(1:Lxu(u), 1:Lxu(u),:);
  Rxxun_cell{u} = reshape(num2cell(Rxxun_cell{u},[1,2]), 1, N);
end
Rxxun_cell = vertcat(Rxxun_cell{:}); % U*N cell array

Rxx = zeros(Lx,Lx,N);
for n=1:N
  Rxx(:,:,n) = blkdiag(Rxxun_cell{:,n});
end

bs=zeros(1,U);
bsum_lin=0;
for u=1:U
  indices=idx_start(u):idx_end(u);
  for n=1:N
    bs(u)=bs(u)+(1/cb)*(log2(det(eye(Ly)+H(:,:,n)*Rxx(:, ..., :,:,n)*H(:,:,n)'*Rxx(:,:,n)*H(:,:,n)'- H(:,indices,n)*Rxx(indices, ..., indices,n)*H(:,indices,n)'- H(:,:,n)*indices,n)*Rxx(indices, ..., indices,n)*H(:,indices,n)'));
  end
  bsum_lin=bsum_lin+real(bs(u));
end
end

% function [Rwcn, bsum] = wcnoise(Rxx, H, Ly, dual_gap, nerr)
% % % inputs
% % H is U*Ly by Lx, where
% % Ly is the number of antennas/receiver,
% % Lx is the number of transmit antennas, and
% % U is the number of users.
% % Rxx is the Lx by Lx input autocorrelation matrix.
% % dual_gap is the duality gap, defaulting to 1e-6 in wcnoise
% % nerr is Newton’s method acceptable error, defaulting to 1e-4 in wcnoise
% % % outputs
% Rwcn is the U*Ly by U*Ly worst-case-noise autocorrelation matrix.
% bsum is the rate-sum/real-dimension.
%
% I = 0.5 * log(det(H*Rxx*H' + Rwcn)/det(Rwcn)), Rwcn has Ly x Ly diagonal blocks
% that are each equal to an identity matrix
%
function [Rwcn, bsum] = wcnoise(Rxx, H, Ly, dual_gap, nerr)
switch nargin
    case 3
        dual_gap = 1e-6;
        nerr = 1e-4;
    case 4
        nerr = 1e-4;
end

[n,m] = size(H);
K = n / Ly;

A = zeros(n,n,n*(n+1)/2);
for i = 1:n
    A(i,i,i) = 1;
end

count = n+1;
for i = 2:n
    for j = 1:i - 1
        A(i,j,count) = 1;
        A(j,i,count) = 1;
        count = count+1;
    end
end

map = zeros(n,n);
for i = 1:K
    map((i-1) * Ly + 1:i * Ly,(i-1) * Ly + 1:i * Ly) = ones(Ly,Ly);
end

NT_max_it = 1000; % Maximum number of Newton’s
% method iterations

dual_gap = 1e-6;
mu = 10; % step size for t
alpha = 0.001; % back tracking line search parameters
beta = 0.5;

count = 1;
nerr = 1e-4; % acceptable error for inner loop
% Newton’s method

v_0 = zeros(n*(n+1)/2,1); % Strictly feasible point;
v_0(1:n) = 0.5 * ones(n,1);
v = v_0;
t = 1;
l_v = 1; % lambda(v) for newton’s method termination

while (1+n)/t > dual_gap
    t = t * mu;
l_v = 1;
count = 1;
while l_v > nerr & count < NT_max_it
    f_val = 0;
    % calculating function value
    Rwcn = zeros(n,n);
    Rzprime = zeros(n,n);
    for i = 1:n*(n+1)/2
        Rwcn = Rwcn + v(i) * A(:,:,i);
    end
    for i = 1:K
        Rzprime((i-1) * Ly + 1:i * Ly,(i-1) * Ly + 1:i * Ly) = Rwcn((i-1) * Ly + 1:i * Ly,(i-1) * Ly + 1:i * Ly);
    end
    f_val = t * log(det(H * Rxx * H' + Rwcn)) - (t + 1) * log(det(Rwcn)) - log(det(eye(n) - Rzprime));
    S = inv(H * Rxx * H' + Rwcn);
    Q = inv(eye(n) - Rzprime);
    Rz_inv = inv(Rwcn);
    g = zeros(n*(n+1)/2,1);
    h = zeros(n*(n+1)/2,n*(n+1)/2);
    for i = 1:n*(n+1)/2
        g(i) = t * trace(A(:,:,i) * S) - (t + 1) * trace(A(:,:,i) * Rz_inv) + (sum(sum(A(:,:,i) .* map)) ~= 0) * trace(A(:,:,i) * Q); % gradient
    end
    for i = 1:n*(n+1)/2
        for j = 1:n*(n+1)/2
            h(i,j) = -t * trace(A(:,:,i) * S * A(:,:,j) * S) + (t + 1) * trace(A(:,:,i) * Rz_inv * A(:,:,j) * S) + (sum(sum(A(:,:,i) .* map)) ~= 0) * (sum(sum(A(:,:,j) .* map)) ~= 0) * trace(A(:,:,i) * A(:,:,j) * S);
        end
    end
dv = -h \ g; % search direction

s = 1; % checking v = v+s*dx feasible
% and also back tracking algorithm
v_new = v + s * dv;
f_new = 0;
Rz_new = zeros(n,n);
for i = 1:n*(n+1)/2
    Rz_new = Rz_new + v_new(i) * A(:,:,i);
end
for i = 1:K
    Rzprime((i-1) * Ly + 1:i * Ly,(i-1) * Ly + 1:i * Ly) = Rz_new((i-1) * Ly + 1:i * Ly,(i-1) * Ly + 1:i * Ly);
end
f_new = t * log(det(H * Rxx * H' + Rz_new)) - (t + 1) * log(det(Rz_new)) - log(det(eye(n) - Rzprime));
feas_check = 1;
if real(eig(Rz_new)) > zeros(n,1)
    feas_check = 1;
else
    feas_check = 0;
end
if real(eig(eye(n) - Rzprime)) > zeros(n,1)
    feas_check = 1;
else
    feas_check = 0;
end
feas_check = feas_check * (f_new < f_val + alpha * s * g' * dv);
while feas_check ~= 1
    s = s * beta;
    v_new = v + s * dv;
    f_new = 0;
    Rz_new = zeros(n,n);
    for i = 1:n*(n+1)/2
        Rz_new = Rz_new + v_new(i) * A(:,:,i);
    end
    for i = 1:K
        Rzprime((i-1) * Ly + 1:i * Ly,(i-1) * Ly + 1:i * Ly) = Rz_new((i-1) * Ly + 1:i * Ly,(i-1) * Ly + 1:i * Ly);
    end
    f_new = t * log(det(H * Rxx * H' + Rz_new)) - (t + 1) * log(det(Rz_new)) - log(det(eye(n) - Rzprime));
    feas_check = 1;
if real(eig(Rz_new)) > zeros(n,1)
    feas_check = 1;
else
    feas_check = 0;
end
if real(eig(eye(n) - Rzprime)) > zeros(n,1)
    feas_check = 1;
else
    feas_check = 0;
end
feas_check = feas_check * (f_new < f_val + alpha * s * g' * dv);
end
v = v + s * dv; % update v
l_v = -g'*dv ; % lambda(v)^2 for Newton’s method
count = count + 1; % number of Newtons method iterations
end
end
Rwcn = zeros(n,n);
for i = 1:n*(n+1)/2
    Rwcn = Rwcn + v(i) * A(:,:,i);
end
for i = 1:K
    Rwcn((i-1) * Ly + 1:i * Ly,(i-1) * Ly + 1:i * Ly) = eye(Ly);
end
bsum = 0.5 * log2(det(H * Rxx * H' + Rwcn)/det(Rwcn));

function [Rnn, sumRatebar] = cvx_wcnoise(Rxx, H, Lyu)
  %cvx_wcnoise This function computes the worst-case noise for a given input
  %autocorrelation Rxx and channel matrix.
  % Arguments:
  % - Rxx: input autocorrelation, size(Lx, Lx)
  % - H: channel response, size (Ly, Lx)
  % - Lyu: number of antennas at each user, scalar/vector of length U
  % Outputs:
  % - Rnn: worst-case noise autocorrelation, with white local noise
  % - sumRatebar: maximum sum rate/real-dimension

  eps_margin = 1e-4;
  [Ly,Lx] = size(H);
  if length(Lyu) == 1
    U = Ly/Lyu;
    Lyus = ones(1,U)*Lyu;
    %cvx_wcnoise.m

else
    U = length(Lyu);
    Lyus = Lyu;
end
cum_Lyu = cumsum(Lyus);
cum_Lyu = [0, cum_Lyu(1:end-1)];
us = 1:U;

Htilde = H*sqrtm(Rxx);
cvx_begin sdp quiet
    % cvx_solver mosek
    variable Rnn(Ly, Ly) semidefinite
    variable Z(Lx, Lx) semidefinite
    maximize log_det(eye(Lx) - Z)
    subject to
    for u = us
        Rnn(cum_Lyu(u) + (1:Lyus(u)), cum_Lyu(u) + (1:Lyus(u))) == eye(Lyus(u));
    end
    Rnn - eps_margin*eye(Ly) == semidefinite(Ly);
    [Rnn + Htilde*Htilde', Htilde; Htilde', Z] == semidefinite(Ly+Lx);
cvx_end

sumRatebar = -0.5*log2(exp(1))*cvx_optval;

bcmax.m

% function [Rxx, Rwcn, bmax] = bcmax(iRxx, H, Lyu)
% Uses cvx_wcnoise.m and rate-adaptive waterfill.m (Lagrange Multiplier based)
% Arguments:
%   - iRxx: initial input autocorrelation array, size is Lx x Lx x N.
%     Only the sum of traces matters, so can initialize to any valid autocorrelation matrix Rxx to run wcnoise.
%     needs to include factor N/(N+nu) if nu ~= 0
%   - H: channel response, size is Ly x Lx x N, w/o sqrt(N) normalization
%     can create variable-u by just using dummy zero rows in H for all output receivers that have less than max (=Lyu input)
% Outputs:
%   - Rxx: optimized input autocorrelation
%   - Rwcn: optimized worst-case noise autocorrelation, with white local noise
%     SO IF H is noise-whitened for Rnn, then actual noise is Rwn^(1/2)*Rnn*Rwcn^*(-1/2)
%   - b: maximum sum rate/real-dimension - user must mult by 2 for complex case

function [Rxx, Rwcn, bmin] = bcmax(iRxx, H, Lyu)

    [Ly,Lx,N] = size(H);
    total_en = trace(sum(iRxx, 3));
    bmin = 0;
    1105
ib=zeros(1,N);
Rwcn = zeros(Ly,Ly,N);
for n=1:N % worst-case noise independent over tones for BC
[Rwcn(:, :, n), ib(n)] = cvx_wcnoise(iRxx(:, :, n), H(:, :, n), Lyu);
end
while (abs(sum(ib) - bmin) > 1e-5) %tolerance
    % uncomment the following two lines to see how the loop progresses
    %bmax
    bmin = sum(ib);
    % Vector Coding Gains for each tone
    M=zeros(Lx,Lx,N);
gains = zeros(Lx,N);
    for n=1:N
        [V,D,~]=svd(Rwcn(:, :, n));
        sqD = sqrt(D).*((D>1e-6);
        invsqRwcn = V*pinv(sqD)*V';
        Htil = invsqRwcn*H(:, :, n);
        [~, g, M(:, :, n)] = svd(Htil);
        g=diag(g);
        gains(1:length(g),n)=g.^2;
    end
    % Water-filling step
    En = waterfill(total_en, reshape(gains',N*Lx,1), 1);
    %bvec=0.5*log2(ones(N*Lx,1)+En.*reshape(gains',N*Lx,1))';
    %bmax = real(sum(bvec));
    En=reshape(En,N,Lx)';
    % update worst-case-noise step
    for n=1:N
        newiRxx = M(:, :, n)*diag(En(:,n))*M(:, :, n)';
        iRxx(:, :, n) = (iRxx(:, :, n)+newiRxx)/2;
    end
end
Rxx = iRxx;
bmin = sum(ib);

G.5.4 From Subsection 5.6 matlab programs

wci.m - Worst Case IC interference with distributed management - M. Brady

function [Rate Y X int_profile]=wci(H,P,Sigma,Gap)
%function [Rate Y X int_profile]=wci(H,P,Sigma,Gap)
%Compute the worst-case interference for IC user 1
%Inputs: H is a UxUxN matrix of channel gains
% where H(m,p,n) is channel from user p into user m on tone n
% P is a Ux1 vector of power constraints.
% Sigma is a N x 1 vector of AWGN noises (per tone noise)
% Gap is the Gap-to-Capacity in LINEAR scale (not dB)
%Outputs: Rate is the guaranteeable rate under WCI
% Y is the worst-interference inducing power allocations
X is the victim modem response to the worst-interference
int_profile is WCI interference profile

% Restrictions:  
* H of user 1 should not be zero for all tones
* H must have at least 2 users
* P must have each element strictly positive

Test the input dimensionality
Rate = 0;
Y = 0;
X = 0;
int_profile = 0;

TOL = 1e-20;  % Channel gains less than this are treated as 0

try
    TONESRAW = size(H,3);
    if size(Sigma) ~= [TONESRAW 1]
        disp('Invalid input dimensions for Sigma')
        return
    end
    if or(prod(size(Gap)) ~= 1, Gap < 1)
        disp('Invalid Gap')
        return
    end
    if or(size(P,1) ~= size(H,1), size(P,2) ~= 1)
        disp('Invalid input dimensions of P')
        return
    end
    if size(H,1)~=size(H,2)
        disp('Invalid input dimensions. H must be square (per tone)')
        return
    end
    if size(H,1)~=size(H,2)
        disp('Invalid input dimensions. H must be square (per tone)')
        return
    end

    catch
        disp('Invalid input dimensions, or not enough inputs.
    end

Get power gains
Hsq = H .^ 2;

% Initialize interference structure
A = zeros(size(H,1), size(H,3));
Hsq_new = zeros(size(H,1), size(H,2));
Sigma_new = [];

% Extract TONESRAW where victim has gain of < TOL
pos = 1;
ontones = [];
for n=1:TONESRAW
    if(H(1,1,n) >= TOL)
Hsq_new(:,:,pos) = Hsq(:,:,n);
Sigma_new(pos,1) = Sigma(n);
ontones = [ontones n];
pos = pos+1;
end
end

TONES = size(Hsq_new,3);

%Do normalization
normlz = Hsq_new(1,1,:);
normlz = reshape(normlz,prod(size(normlz)),1);
for intr=2:size(H,1)
    Htemp = Hsq_new(1,intr,:);
    Htemp = reshape(Htemp, prod(size(Htemp)),1);
    A(intr,:) = Gap*(Htemp ./ normlz)’;
end

Sigma_norm = Gap*(Sigma_new ./ normlz)’;

CAP = 2*repmat(P,1,TONES);
ABSTOL = .000001;

Atilde{1} = A;
for u=2:size(H,1)
    Atilde{u} = 0*A;
end

w = zeros(size(H,1),1);
w(1) = 1;

Sigma_norm2 = [Sigma_norm’... 
    repmat(Sigma_norm’,1,size(H,1)-1)];

[Xback, Yback, LB_cp]=linw(Atilde,Sigma_norm2’,P,CAP,w’,ABSTOL,0);

Rate = LB_cp;
Yb = Yback(2:size(Yback,1),:’)’;
Xb = Xback(1,:)’;

%Do the writeback
int_profile2 = (normlz’ / Gap) .* (sum(A .* Yback,1)+Sigma_norm);
int_profile2 = int_profile2’;
int_profile = zeros(size(H,3),1);
int_profile(ontones) = int_profile2;

Y = zeros(size(H,3),size(H,1)-1);
X = zeros(size(H,3),1);

Y(ontones,:) = Yb;
X(ontones,:) = Xb;
G.6 Matlab Programs for spectra calculations in Chapter 6

G.6.1 Rectangular (REC) CPM Spectra Programs

There are 4 programs used:

1. Phase_nREC computes the phase pulse response for a rectangular frequency pulse response. (Since
   the integral is trivial, no Freq program is provided.)

2. PSum_nREC is a program that computes the product-and-sum term that is an intermediate result
   in Appendix A’s spectrum calculations. This function is typically integrated by another function
   (Matlab “handle”) call and so separated to assist debugging and keep program run time bounded.

3. R_nREC computes the autocorrelation function for positive autocorrelation lags by integration of
   the function in PSum_nREC up to ($\nu + 1$)$T$. The function repeats and scales by the constant
   $C(h, M)$ in a geometric progression for all subsequent symbol intervals.

4. S_nREC computes the desired power spectral density from R_nREC exploiting the geometric pro-
   gression as well as using the FFT function to approximate a continuous integral.

These programs’ source-code listings appear in order here.

```matlab
function phase = Phase_nREC(t,T,n)

 J. Cioffi - November 2017
 Phase_nREC computes the phase-pulse-response value at time t for nu-REC
 t is time index
 n=nu is the number of non-0 symbols in the frequency response
 T is the symbol period.
 nREC should be linearly growing from 0 to 1/2nT, holding at 1/2 t>nT
 phase is the output phase

 l=size(t);
 j=1(1);
 l=l(2);
 for i1=1:j
 for i2=1:l
 if t(i1,i2) < 0
 phase(i1,i2) = 0;
 elseif t(i1,i2) > n*T
 phase(i1,i2) = 1/2;
 else
 phase(i1,i2)=(1/(2*n*T))*t(i1,i2);
 end
 end
 end

 function sump = PSum_nREC(t,tau,T,n,h,M,m)
 J. Cioffi - November 2017 (used in computing autocorrelation)
 PSum_nREC computes the sum of exponents in the Aulin/Sundberg formula
 for nu-REC continuous phase modulation. PSum_nREC calls Phase_nREC above.
```
% sump is the sum of exponents term in the autocorrelation integral
% t is time index
% tau is autocorrelation lag over the interval 0 to T (really tauprime)
% n=nu is the number of symbol non-0 symbols in the frequency response
% T is the symbol period.
% h is the index of modulation
% M is the number of messages
% indexj is the product index
% m+1 is the upper index on the product (outer function that uses this one)
% tau = tauprime + mT
%
lt=size(t);
l=lt(2);
sumptemp=zeros(m+1+n,l);
sump=zeros(1,l);
for index=1:m+1+n % index is offset by n=nu from the formula
    sumptemp(index,:)=(1/M)*sum(exp(kron(i*2*pi*h*([-M+1:2:M-1]'),Phase_nREC(t+(tau-(index-n-m)*T)*ones(1,l),T,n)
    - Phase_nREC(t-(index-n)*T*ones(1,l),T,n))),1);
end
temp=prod(sumptemp([1:m+1+n],:),1);
for indexb=1:l
    sump(indexb)=real(temp(1,indexb));
end

% -----------------------------------------------------
function autoR = R_nREC(tau,T,n,h,M)
% J. Cioffi - November 2017
% R_nREC computes the autocorrelation function evaluated for any
% positive time arg
% R_nREC calls Psum_nREC through the integral function of matlab
% tau is time lag (which is positive)
% tauprime is an internal variable representing the fractional value
% of tau (tau = tauprime + mT), which must be non-negative
% n is the number of symbol non-0 symbols in the frequency response
% T is the symbol period.
% h is the index of modulation
% M is the number of messages
% autoR is the output for lag tau - calls PSum_nREC

    tauprime=tau-floor((1/T)*tau);
m=floor((1/T)*tau);
l=size(tau);
l=l(2);
autoR=zeros(1,l);
for index=1:l
    autoR(index)=(1/T)*integral(@(t) PSum_nREC(t,tauprime(index),T,n,h,M,m(index)),0,T);
end

% -------------------------------------
function spec = S_nREC(T,n,h,M)
  
  J. Cioffi - November 2017
  
  S_nREC computes the power spectrum for REC autocorrelation
  To avoid multiple nested integral-function calls, the FFT is used
  instead
  
  The exponential decay of the function in nT to nT+1 for all subsequent
  symbol periods is used to compute those contributions
  
  n is the number of symbol non-0 symbols in the frequency response
  T is the symbol period.
  h is the index of modulation
  M is the number of messages
  
  this program assumes that sampling interval is .01*T
  this program computes 10k point FFT, so frequency range is 0:100/T
  spec is the output
  
  an FFT is used instead of a continuous integral to compute spectrum
  nREC is called to compute the first portion of auto
  
  lr1=(n)*T*100;
lr2=T*100;
R=R_nREC([0:(lr1+lr2)]*.01*T,T,n,h,M);
R1=R(1:lr1+1);
R2=R(lr1+2:lr1+lr2+1);
temp =[R1 R2];
for indexa = 2:50-n
  r([1:100])=R2*(C_alpha(h,M)^(indexa-1));
temp=[temp , r([1:100])];
end
R=[temp, temp(5000:-1:2)];
spec=.01*fft(R,10000);

G.6.2 Raised-Cosine (RC) CPM Spectra Programs

There are 4 programs used:

1. Phase_nRC computes the phase pulse response for a raised-cosine pulse response. (Since the integral is trivial, no Freq program is provided.)

2. PSum_nRC is a program that computes the product-and-sum term that is an intermediate result in Appendix A’s spectrum calculations. This function is typically integrated by another function (Matlab “handle”) call and so separated to assist debugging and keep program run time bounded.

3. R_nRC computes the autocorrelation function for positive autocorrelation lags by integration of the function in PSum_nRC up to (ν+1)T. The function repeats and scales by the constant $C_\alpha(M)$ in a geometric progression for all subsequent symbol intervals.

4. S_nRC computes the desired power spectral density from R_nRC exploiting the geometric progression as well as using the FFT function to approximate a continuous integral.

These RC programs’ source-code listings appear in order here.

1111
function phase = Phase_nRC(t,T,n)
% Phase_nRC computes the phase-pulse-response value at time t for nRC
% t is time index
% n is the number of symbol non-0 symbols in the frequency response
% T is the symbol period.
% phase is the output.
% Phase should be raised cosine from 0 to 1/2nT, holding at 1/2 t>nT
% phase is the output phase
l=size(t);
l=l(2);
phase=zeros(1,l);
for index=1:l
    if t(index) < 0
        phase(index) = 0;
    elseif t(index) > n*T
        phase(index) = 1/2;
    else
        phase(index)=(1/(2*n*T)*t(index))-(1/(4*pi))*sin(2*pi*t(index)/(n*T));
    end
end

function sump = PSum_nRC(t,tau,T,n,h,M,m)
% Psum_nRC computes the sum of exponents term in the spectrum integral for nRC
% t is time index
% tau is offset over the interval 0 to nT
% n=nu is the number of symbol non-0 symbols in the frequency response
% T is the symbol period.
% h is the index of modulation
% M is the number of messages
% indexj is the product index
% m+1 is the upper index on the product (outer function that uses this one)
% Psum_nRC calls Phase_nRC
% sump is the output
lt=size(t);
l=lt(2);
sumptemp=zeros(m+1+n,l);
sump=zeros(1,l);
for index=1:m+1+n
    sumptemp(index,:)=(1/M)*sum(exp(kron(i*2*pi*h*([-M+1:2:M-1]'),Phase_nRC(t+(tau -(index-n-m)*T)*ones(1,l),T,n) - Phase_nRC(t-(index-n)*T*ones(1,l),T,n)))),1);
end
temp=prod(sumptemp([1:m+1+n,:],:),1);
for indexb=1:l
    sump(indexb)=real(temp(1,indexb));
end

function autoR = R_nRC(tau,T,n,h,M)
% R_nRC computes the RC autocorrelation function evaluated for any positive time arg
% tau is time lag (which is positive)
% tauprime is an internal variable representing the fractional value
% of tau (tau = tauprime + mT), which must be non-negative
% n is the number of symbol non-0 symbols in the frequency response
% T is the symbol period.
% h is the index of modulation
% M is the number of messages
% autoR is the output for lag tau - this calls PSum_nRC

tauprime=tau-floor((1/T)*tau);
m=floor((1/T)*tau);
l=size(tau);
l=l(2);
autoR=zeros(1,l);
for index=1:l
    autoR(index)=(1/T)*integral(@(t) PSum_nRC(t,tauprime(index),T,n,h,M,m(index)),0,T);
end

function spec = S_nRC(T,n,h,M)
% S_nREC computes the power spectrum for RC autocorrelation and calls R_nRC once.
% To avoid multiple nested integral-function calls, the FFT is used
% instead
% The exponential decay of the function in nT to nT+1 for all subsequent
% symbol periods is used to compute those contributions
% n is the number of symbol non-0 symbols in the frequency response
% T is the symbol period.
% h is the index of modulation
% M is the number of messages
% this program assumes that sampling interval is .01*T
% this program computes 10k point FFT, so frequency range is 0:100/T
%
% spec is the power spectrum
lr1=(n)*T*100;
lr2=T*100;
R=R_nRC([0:(lr1+lr2)]*.01*T,T,n,h,M);
R1=R(1:lr1+1);
R2=R(lr1+2:lr1+lr2+1);
temp=[R1 R2];
for indexa = 2:50-n
    r([1:100])=R2.*(C_alpha(h,M)^(indexa-1));
    temp=[temp , r([1:100])];
end
R=[temp, temp(5000:-1:2)];
spec=.01*fft(R,10000);

G.6.3 Spectrally Raised-Cosine (SRC) CPM Spectra Programs
There are 6 programs used:

1. Freq_nSRC computes the frequency pulse response for a spectrally raised-cosine. It’s integration
to a pulse response is non trivial.
• Causality is ensured by looking back $3\nu$ symbol periods in time. This author found this necessary to get accurate results.

2. Phase\_nSRC computes the phase pulse response via integration of Freq\_nSRC.

3. Phase\_nSRCinterp uses results from several computed and stored versions of calls to Phase\_nSRC to create a continuous function in Matlab that can be integrated but avoiding multiple embedded definite integrals in Matlab, which this author found to create long run times and be prone to numerical problems.

4. PSum\_nRC is a program that computes the product-and-sum term that is an intermediate result in Appendix A’s spectrum calculations. This function is typically integrated by another function (Matlab “handle”) call and so separated to assist debugging and keep program run time bounded. In effect the function using the interpolated SRC call within will be integrated (once). This function extends the causality look back/forward to $6\nu$ symbol periods, which the author found necessary for accurate results.

5. R\_nSRC computes the autocorrelation function for positive autocorrelation lags by integration of the function in PSum\_nRC up to $(\nu + 1)T$, where $\nu$ includes the $6\nu$ extension. The function repeats and scales by the constant $C_\alpha(M)$ in a geometric progression for all subsequent symbol intervals.

6. S\_nSRC computes the desired power spectral density from R\_nSRC exploiting the geometric progression as well as using the FFT function to approximate a continuous integral.

These SRC programs’ source-code listings appear in order here.

```matlab
function freq = Freq_nSRC(t,T,n,alpha)
% Freq_nSRC computes the TIME-DOMAIN freq-pulse-response
% value of spectrally raised cosine at time t
% t is time index
% n is the width of the main lobe
% 3n symbols delay is introduced to ensure causality (with small
% truncation/windowing error)
% T is the symbol period.
% alpha is the roll-off factor (0 <= alpha <= 1)
%
1 = size(t);
1=1(2);
t=t-(3*n)*T*ones(1,1);
plot(t)
freq=(1/(n*T))*sinc((2/(n*T))*t);
for k=1:l
 if t(k) == (n*T)/(4*alpha)
 freq(k) = freq(k)*pi*.25;
 elseif t(k) == -(n*T)/(4*alpha)
 freq(k) = freq(k)*pi*.25;
 elseif (t(k) < -3*n*T) | (t(k) > 3*n*T)
 freq(k)=0;
 else
 freq(k)=freq(k)*cos(((2*alpha*pi)/(n*T))*t(k))/(1-((16*alpha*alpha)/(n*n*T*T))*t(k)*t(k));
 end
end

function phase = Phase_nSRC(t,T,n,alpha)
```

1114
Phase_nSRC computes the TIME-DOMAIN phase pulse response from the freq pulse response

\[ \tau \] is time variable input to the function Freq_nSRaiseCos

integrates freq-pulse in time from negative infinity to time \( t \)

\( t \) is the function input - phase is a function of \( t \)

\[ l = \text{size}(t); \\
l = l(2); \\
\text{phasearray} = \text{zeros}(1, l); \\
\text{for index} = 1:l \\
\quad \text{phasearray}(index) = \int_{-50*T}^{t(index)} Freq_nSRC(u, T, n, alpha); \\
\text{end} \\
\text{phase} = \text{phasearray}; \\
\]

function phase = Phase_nSRCInterp(t, T, n, basephase)

This function interpolates the phase pulse response from the samples in basephase

basephase is a 501 point file of samples of the output of

Phase_nSRC, which itself looks back 3*n symbol periods

the call that generated basephase is then

\[ \text{basephase} = \text{Phase_nSRC}([0:2000] *.1*T); \]

sampling is thus presumed at T/10 in basephase

basephase presumes an "n" so this function is called with

basephaseSRC(n,:), so basephaseSRC is typically 15 x 1001 array.

The value of THE SAME n is provided to PSum_nSRC so that 3*n is
implemented.

to generate basephase, generate the command below 15 times n=1:15

basephaseSRChalf(n,:) = Phase_nSRC(t, T, n, alpha); with alpha =0.5 for half

SEE COMMENTED CALLS BELOW

alpha is the excess bandwidth

n is the number of symbol periods in the partial response

T is the symbol period for basephase

\[ l = \text{size}(t); \\
l = l(2); \\
\text{phase} = \text{spline([0:1000] *.1, basephase, t);} \\
\text{low} = \text{floor}(t*10/T); \\
\text{index} = \text{zeros}(1, l); \\
\text{for } k = 1:l \\
\quad \text{index}(k) = \text{low}(k) + 40 + n*10; \\
\quad \text{index}(k) = \text{low}(k); \\
\quad \text{if } \text{index}(k) < 1 \\
\quad \quad \text{phase}(k) = 0; \\
\quad \quad \text{elseif } \text{index}(k) > 999 \\
\quad \quad \quad \text{phase}(k) = 0.5; \\
\text{end} \\
\text{end} \\
\]

function sump = PSum_nSRC(t, tau, T, n, h, M, m, basephase)

phase is the sum of exponents term in the SRC spectrum integral

\( t \) is time index

\( \tau \) is offset over the interval 0 to T, so really tauprime

1115
% n is the width of main spectrum lobe in symbol periods
% SRC causality forces n--> 6*n roughly
% T is the symbol period.
% h is the index of modulation
% M is the number of messages
% indexj is the product index
% m+1 is the upper index on the product (outer function that uses this one)
% PSum_nSRC is an intermediate term in the spectrum calculation for
% n SRC
% sump is the output

lt=size(t);
l=lt(2);
sumptemp=zeros(m+1+6*n,l);
sump=zeros(1,l);
%n=n+10;
for index=1:m+1+6*n
    sumptemp(index,:)=(1/M)*sum(exp(kron(i*2*pi*h*([-M+1:2:M-1]'),Phase_nSRCInterp(t+(tau-(index-(6*n)-m)*T)*ones(1,l),T,n,basephase)
    - Phase_nSRCInterp(t-(index-(6*n))*T*ones(1,l),T,n,basephase))),1);
end
temp=prod(sumptemp([1:m+1+6*n],:),1);
for indexb=1:l
    sump(indexb)=real(temp(1,indexb));
end

function autoR = R_nSRC(tau,T,n,h,M,basephase)
% R_nSRC computes the SRC autocorrelation function evaluated for any
% positive time arg
% tau is time lag (which is positive) and should not exceed (n+1)T
% tauprime is an internal variable representing the fractional value
% of tau (tau = tauprime + mT), which must be non-negative
% n is the number of symbol non-0 symbols in the frequency response
% T is the symbol period.
% alpha is roll-off factor (between 0 and 1)
% h is the index of modulation
% M is the number of messages
% R_nSRC calls PSum_nSRC.
%
% autoR is the output for lag tau

tauPrime=tau-floor((1/T)*tau);
m=floor((1/T)*tau);
l=size(tau);
l=l(2);
autoR=zeros(1,l);
for index=1:l
    if tau(index) > (6*n)*T
        autoR(index)=0;
    else
        autoR(index)=(1/T)*integral(@(t) PSum_nSRC(t,tauPrime(index),T,n,h,M,m(index),basephase),0,T);
    else
        autoR(index)=0;
    end
end
function spec = S_nSRC(T,n,h,M,basephase)

% S_nSRC computes the power spectrum for REC autocorrelation
% To avoid multiple nested integral-function calls, the FFT is used
% instead
% The exponential decay of the function in nT to nT+1 for all subsequent
% symbol periods is used to compute those contributions
% The functions called extend n to 6n to ensure near causality
% n is the number of symbol non-0 symbols in the frequency response
% T is the symbol period.
% h is the index of modulation
% M is the number of messages
% this program assumes that sampling interval is .01*T
% this program computes 10k point FFT, so frequency range is 0:100/T

% an FFT is used instead of a continuous integral to compute spectrum
% nREC is called to compute the successive portions of auto
% correlation
lr1=(3*n)*T*100;
lr2=T*100;
R=R_nSRC([0:(lr1+lr2)]*.01*T,T,n,h,M,basephase);
R1=R(1:lr1+1);
R2=R(lr1+2:lr1+lr2+1);
temp = [R1 R2];
r([1:100])=R2;
for indexa = 2:50-(3*n)
   r([1:100])=r([1:100])*C_alpha(h,M);
temp=[temp , r([1:100])];
end
R=[temp , temp(5000:-1:2)];
spec=.01*fft(R,10000);

G.6.4 Gaussian Minimum-Shift Keying (GMSK) CPM Spectra Programs

There are 6 programs used:

1. Freq_GMSK computes the frequency pulse response for a spectrally raised-cosine. It’s integration
to a pulse response is non trivial.
   - Causality is ensured by looking back 1/B symbol periods in time. This author found this
     necessary to get accurate results.

2. Phase_GMSK computes the phase pulse response via integration of Freq_GMSK.

3. Phase_GMSKinterp uses results from several computed and stored versions of calls to Phase_GMSK
   to create a continuous function in matlab that can be integrated but avoiding multiple embedded
   definite integrals in Matlab, which this author found to create long run times and be prone to
   numerical problems.

4. PSum_GMSK is a program that computes the product-and-sum term that is an intermediate result
   in Appendix A’s spectrum calculations. This function is typically integrated by another function
   (Matlab “handle”) call and so separated to assist debugging and keep program run time bounded.
   In effect the function using the interpolated GMSK call within will be integrated (once). This
   function extends the causality look back/forward to 1/B + 10 symbol periods, which the author
   found necessary for accurate results.
5. \( R_{\text{GMSK}} \) computes the autocorrelation function for positive autocorrelation lags by integration of the function in \( P_{\text{Sum}}_{\text{GMSK}} \) up to \((\nu+1)T\) where \( \nu \) includes the \( 1/B + 10 \) extension. The function repeats and scales by the constant \( C_{\alpha}(M) \) in a geometric progression for all subsequent symbol intervals.

6. \( S_{\text{nGMSK}} \) computes the desired power spectral density from \( R_{\text{GMSK}} \) exploiting the geometric progression as well as using the FFT function to approximate a continuous integral.

These SRC programs’ source-code listings appear in order here.

```matlab
function freq = Freq_GMSK(t,T,B)
 \%
 \% Freq_GMSK computes the TIME-DOMAIN freq-pulse-response
 \% value of spectrally raised cosine at time t
 \% t is time index
 \% T is the symbol period.
 \% B is the time multiplier
 \%
 l = size(t);
 l=l(2);
 if B > 1
 t=t-T*ones(1,l);
 else
 t=t-(T/B)*ones(1,l);
 end
 const=2*pi*B/sqrt(log(2));
 freq=(1/(2*T))*(q(const*(t-T/2))-q(const*(t+T/2)));
end

function phase = Phase_GMSK(t,T,B)
 \%
 \% Phase_GMSK computes the TIME-DOMAIN phase pulse response from the freq pulse response
 \% tau is time variable input to the function Freq_nSRaiseCos
 \% T is the symbol period
 \% B is a scaling parameter that can be thought of roughly as 1/n
 \% integrates freq-pulse in time from negative infinity to time t
 \% t is the function input - phase is a function of t
 l=size(t);
 l=l(2);
 phasearray=zeros(1,l);
 for index=1:l
 phasearray(index)= integral(@(u)Freq_GMSK(u,T,B),-inf,t(index)); %50*T,t(index));
 end
 phase=phasearray;
end

function phase = Phase_GMSKInterp(t,T,B,basephase)
 \%
 \% Interpolates the phase pulse response from the samples in basephase
 \% basephase is a 501 point file of samples of the output of
```

1118
Phase_GMSK, which itself looks back T/B symbol periods where BT is the characterizing product and assumed of the form 1/integer basephase = Phase_GMSK([0:200]*.1*T;
 sampling is thus presumed at T/10 in basephase basephase presumes an "1/int =B" so this function is called with basephaseSRC(1/B,:), so basephaseSRC is really 10 x 201 array.

The value of THE SAME n (or B) is provided to PSum_GMSK, along with h most GMSK use h=1/2.
basephase was generated with teh genGMSK function to avoid computing it multiple times, and this is assumed 201 points at T/10 T is the symbol period for basephase

l=size(t);
l=l(2);
phase=spline([0:200]*.1,basephase,t);
low=floor(t*10/T);
index=zeros(1,l);
for k=1:l
    index(k)=low(k);
    if index(k) < 1
        phase(k)=0;
    elseif index(k) > 199
        phase(k)=0.5;
    end
end

function sump = PSum_nSRC(t,tau,T,B,h,M,m,basephase)
% PSum computes the sum of exponents term in the spectrum integral
% t is time index
% tau is offset over the interval 0 to T, so really tauprime
% B the GMSK parameter (assumed of form 1/integer)
% To maintain causality, time is extened by 1/B+10
% T is the symbol period.
% h is the index of modulation
% M is the number of messages
% indexj is the product index
% m+1 is the upper index on the product (outer function that uses this one)
% PSum_nSRC is an intermediate term in the spectrum calculation for
% nSRC
% sump is the output
lt=size(t);
l=lt(2);
sumptemp=zeros(m+1+(1/B)+10,l);
sump=zeros(1,l);
% n=n+10;
for index=1:m+1+(1/B)+10
    sumptemp(index,:)=(1/M)*sum(exp(kron(i*2*pi*h*([-M+1:2:M-1]'),Phase_GMSKInterp(t+(tau-(index-(1/B+10)-m)*T)*ones(1,l),T,B,basephase)
    - Phase_GMSKInterp(t-(index-(1/B+10))*T*ones(1,l),T,B,basephase))),1);
end
temp=prod(sumtemp([1:m+1+(1/B)+10],:),1);
for indexb=1:l
    sump(indexb)=real(temp(1,indexb));
end

function autoR = R_GMSK(tau,T,B,h,M,basephase)
    \% R_GMSK computes the autocorrelation function evaluated for any positive time arg
    \% tau is time lag (which is positive) and should not exceed (n+1)T
    \% tauprime is an internal variable representing the fractional value
    \% of tau (tau = tauprime + mT), which must be non-negative
    \% n is the number of symbol non-0 symbols in the frequency response
    \% B is a time spreading factor roughly equivalent to 1/nu
    \% To maintain causality, time is extended by 1/B+10
    \% T is the symbol period.
    \% h is the index of modulation
    \% M is the number of messages
    \% autoR is the output for lag tau

tauprime=tau-floor((1/T)*tau);
m=floor((1/T)*tau);
l=size(tau);
l=l(2);
autoR=zeros(1,l);
for index=1:l
    if tau(index) > (10+1/B)*T
        autoR(index)=0;
    else
        autoR(index)=(1/T)*integral(@(t) PSum_GMSK(t,tau_prime(index),T,B,h,M,m(index),basephase),0,T);
    end
end

function spec = S_GMSK(T,B,h,M,basephase)
    \% S_GMSK computes the power spectrum for GMSK autocorrelation
    \% To avoid multiple nested integral-function calls, the FFT is used
    \% instead
    \% The exponential decay of the function in nT to nT+1 for all subsequent
    \% symbol periods is used to compute those contributions
    \% The functions called extend n to 6n to ensure near causality
    \% B = 1/integer index
    \% To maintain causality, time is extended by 1/B+10
    \% T is the symbol period.
    \% h is the index of modulation
    \% M is the number of messages
    \% this program assumes that sampling interval is .01*T
    \% this program computes 10k point FFT, so frequency range is 0:100/T
    \% an FFT is used instead of a continuous integral to compute spectrum
    \% nREC is called to compute the successive portions of auto

1120
\% correlation

\begin{verbatim}
lr1=(1/B)*T*100;
lr2=T*100;
R=R_GMSK([0:(lr1+lr2)]*0.01*T,T,B,h,M,basephase);
R1=R(1:lr1+1);
R2=R(lr1+2:lr1+lr2+1);
temp = [R1 R2];
for indexa = 2:50-(1/B)
    r([1:100])=r([1:100])*C_alpha(h,M);
    temp = [temp, r([1:100])];
end
R = [temp, temp(5000:-1:2)];
spec = 0.01*fft(R,10000);
\end{verbatim}
G.7 Chapter 7 Matlab Software listings

G.7.1 MLSD Programs

mlsd1D.m

function mh = MLSD(y, v, b, Sk, Yk, Xk, e)

M = 2^b;

C = [0 1e12*ones(1, M^v-1)]; % State metric, initialized so as to start at state 0
D = [];
Paths = [];
C_next = [];

for k=1:length(y),
    i=1;
    for j=1:M^v,
        for b=1:M
            if e == 1
                \[ D(i) = \|Yk(j, b)-y(k)\|^2; \]
            else
                \[ D(i) = \text{sum}(\text{xor}(	ext{dec2bin}(Yk(j,b)),\text{dec2bin}(y(k)))); \]
            end
            i=i+1;
        end
        C_next(:,j) = Sk(:,j) * C;
        D_next(:,j) = D(:,j) + Yk(:,j).
        C = C_next;
        D = D_next;
        Paths = [Paths, i];
    end
end

% OUTPUT
% mh is the detected message sequence
% %
% % **********************************************************


i = 1;
for j = 1:M^v,
    minCost = 1e12;
    for b = 1:M
        cost = C(Sk(j, b)) + D(i);
        i = i + 1;
        if (cost < minCost)
            minCost = cost;
            Paths(j, k) = Sk(j, b);
        end
    end
    C_next(j) = minCost;
end

if (mod(k, 1000) == 0)
    C_next = C_next - min(C_next); % Normalization
end

C = C_next;
end

% Find the best survivor path at k=length(y)
[minCost, I] = min(C);

if (length(I) > 1)
    warning('Warning: There are more than one path with equal cost at state k=length(y)!');
end

% We will pick the first
sp = I(1);

xh = [];
for k = length(y):-1:1,
    xh(k) = Xk(sp);
    sp = Paths(sp, k);
end

mh = xh;

**G.7.2 APP Programs**

These programs are from the matlab extra software pages where various engineers contribute.

**BCJR_conv.m**

% function BCJR_conv(y,trellis,sigma)
% BCJR_conv Decoder
% This algorithm is reserved to the implementation of the Bahl, Cocke, Jelinek and Raviv (BCJR) algorithm. This function takes as input the channel output (corrupted data) and the a priori prob (we will set it to 1/2) and returns as output
% the APP Log Likelihood Ratio (LLR) for every data input. It is usually called a
% Soft Input Soft Output (SISO) decoder. It can be applied to any code
% having a finite state machine, in our case we will use it for rate-1/n convolutional codes.
%
% K. Elkhalil, SUP'COM Tunisia
%
% *******************************************************************************
function LLR=BCJR_conv(y,trellis,sigma)
N=length(y); % y is the channel output
n=log2(trellis.numOutputSymbols);
k=log2(trellis.numInputSymbols); % k=1
R=k/n; % coding rate, R=1/n
LLR=zeros(1,N*R);
Pap=0.5; % The a priori probability.
%********* Computing gamma for all states at each time **************
gamma=zeros(N*R,trellis.numStates,trellis.numStates); % we suppose that the first state is the 0 state
for k=1:N*R
    for s=1:trellis.numStates
        for ss=1:trellis.numStates
            [msg,in]=ismember(ss-1,trellis.nextStates(s,:));
            if msg==1
                gamma(k,ss,s)=0.5*((1/sqrt(2*pi*sigma^2))^n)*exp(-sum((y(n*k-n+1:n*k)-(1-2*binary(trellis.outputs(s,in),n))).^2)/2/sigma^2) ;
            end
        end
    end
end
%************** alpha recursions********************
alpha=zeros(N*R+1,trellis.numStates);
alpha(1,1)=1;
for k=2:N*R+1
    for ss=1:trellis.numStates
        for s=1:trellis.numStates
            alpha(k,ss)=alpha(k,ss)+gamma(k-1,ss,s)*alpha(k-1,s) ;
        end
    end
    alpha(k,:)=alpha(k,:)/sum(alpha(k,:)); % Normalization
end
%************** beta recursions********************
beta=zeros(N*R+1,trellis.numStates);
beta(N*R+1,:)=alpha(N*R+1,:);
for k=N*R+1:-1:2
    for ss=1:trellis.numStates
        for s=1:trellis.numStates
            beta(k-1,ss)=beta(k-1,ss)+gamma(k-1,s,ss)*beta(k,s) ;
        end
    end
    beta(k-1,:)=beta(k-1,:)/sum(beta(k-1,:)) ; % Normalization
end
%%%%%%%%%%%%%%%%%%% Computing the LLRs %%%%%%%%%%%%%%%
for k=1:N*R
    up=0;
down=0;
    for s=1:trellis.numStates
        for ss=1:trellis.numStates
            if s==ss
                gamma(k,ss,s)=0.5*((1/sqrt(2*pi*sigma^2))^n)*exp(-sum((y(n*k-n+1:n*k)-(1-2*binary(trellis.outputs(s,in),n))).^2)/2/sigma^2) ;
            end
        end
    end
    LLR(k,:)=alpha(k,:)/sum(alpha(k,:))-
end
[msg,in]=ismember(ss-1,trellis.nextStates(s,:));
if (msg==1 & in==1) % input=0
    up=up+alpha(k,s)*gamma(k,ss,s)*beta(k+1,ss);
else if (msg==1 & in==2) % input=1
    down=down+alpha(k,s)*gamma(k,ss,s)*beta(k+1,ss);
end
end
end
LLR(k)=log(up/down);
end
end

binary.m : This program is called by BCJR_conv.m.

function binary(x,size)
    function bin=binary(x,size)
        i=max_bin2(x);
        bin=zeros(1,size);
        m=x;
        while m>0
            m=m-2^i;
            bin(i+1)=1;
            i=max_bin2(m);
        end
        z=bin;
        for jj=1:length(bin)
            z(jj)=bin(length(bin)-jj+1);
        end
        bin=z;
    end
end

max_bin2.m : This program is called by BCJR_conv.m.

function i=max_bin2(x)
    y=2^0;
    i=0;
    if x==0
        i=0;
    else
        while x >= y
            y=y*2;
            i=i+1;
        end
        i=i-1;
    end
end

%% 2^-i=<x<=2^-i+1 ;
G.8 Programs from Chapter 8

G.8.1 Trellis plotting program

This program extracted from matlab's extra program pages that are contributed by various engineers.

plotnextstates.m

% function plotnextstates(nextStates)
% Utility function to display nextStates matrix for Convolutional Encoder
% with Uncoded Bits and Feedback example.

% Copyright 2003-2011 The MathWorks, Inc. $Revision: 1.1.6.2 $ $Date: % 2011/12/11 07:38:29 $
function plotnextstates(nextStates)
%-- Create a new figure to plot NextStates figure;

%-- Declare and initialize intermediate variables
[numStates,numIn] = size(nextStates);
yplot = NaN*ones(3*numIn,numStates);
yplot([1:3:end],:) = ones(numIn,1)*[0:numStates-1];
yplot([2:3:end],:) = nextStates';
xplot = repmat([1 numStates NaN]',numIn,numStates);
%-- Plot NextStates matrix
plot(xplot,yplot,'o-','MarkerSize',6, ...%
'MarkerEdgeColor','k','MarkerFaceColor','k');
grid on;
title('Plot of \textit{NextStates} Matrix');
set(gca,'yTick',[0:numStates-1],'YDir','Reverse',...%
'YTickLabel',
[dec2base([0:numStates-1],2) repmat('/',numStates,1) dec2base([0:numStates-1],8)]', ...%
'YLim', [-1 numStates], 'Xlim', [0 numStates+1],'xTick',[1 numStates], ...%
'xTickLabel','[N,N+1,\textit{Position}',[0:1:78.8]);
ylabel('Initial State (Binary/Octal representation)',...%
'HorizontalAlignment','center',VerticalAlignment','Bottom');
axes('yTick',get(gca,'YTick'), ...%
'YAxisLocation','right','Color','none','XTick',[],'YLim',get(gca,'YLim'), ...%
'YTickLabel', get(gca,'YTickLabel'), ...%
'YDir','Reverse', 'Position',get(gca,'Position'));
ylabel('Final State (Binary/Octal representation)', ...%
'HorizontalAlignment','center','VerticalAlignment','Top');

%[EOF]\begin{verbatim}

G.8.2 LDPC Code Programs

get_h_matrix.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% function [H_no_dep H] = get_h_matrix(p,tr,tc,first_1);
%% Generate LDPC H Matrix Uses Generic-LDPC Method As Per Cioffi's Class Notes

1126
%% Example: to Generate (529,462) code, p=23, rw=23, cw=3, first_1=2
%%
%% H = get_h_matrix(23,23,3,2),

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Definition of input variables
%% p : Prime number of the size of base matrix of size p-by-p
%% tr : Row weight = # of base matrices (or 1's) /row, equivalent to K
%% tc : Col weight = # of base matrices (or 1's) per column,eq to J
%% first_1: Set to 2 in generic LDPC code, so right shift by first_1-1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Definition of output variables
%% H_no_dep : the parity check matrix with no dependent rows
%% H : without removing the dependent rows
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% EE379, Chien-Hsin Lee, first version 06/2006, edits by J. Cioffi since
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [H_no_dep , H] = get_h_matrix(p,tr,tc,first_1_start);
% generate base matrix
a = eye(p,p);
a = [a(first_1_start:p,:);a(1:first_1_start-1,:)];
% generate H matrix
H = [];
for row = 1:tc
    current_row = [];
    for cl = 1:tr
        current_row = [current_row,a^((row-1)*(cl-1))];
    end
    H = [H;current_row];
end
% remove dependent rows
% this need to be update with mod2 operation
[Q R] = qr(H);
H_no_dep = [];
for i = 1:p*tc
    if( abs(R(i,i)) > 1E-9)
        H_no_dep = [H_no_dep;H(i,:)];
    end
end

% systematic.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% function [H_no_dep H] = get_h_matrix(p, tr, tc, first_1);
%% Generate LDPC H Matrix Uses Generic-LDPC Method As Per Cioffi's Class Notes
%% Example: to Generate (529,462) code, p=23, rw=23, cw=3, first_1=2
%%
%% H = get_h_matrix(23,23,3,2),

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Definition of input variables
%% p : Prime number of the size of base matrix of size p-by-p
%% tr : Row weight = # of base matrices (or 1's) /row, equivalent to K
%% tc : Col weight = # of base matrices (or 1's) per column,eq to J
%% first_1: Set to 2 in generic LDPC code, so right shift by first_1-1

% systematic.m
%% Definition of output variables
%% H_no_dep : the parity check matrix with no dependent rows
%% H : without removing the dependent rows
function [H_no_dep , H] = get_h_matrix(p,tr,tc,first_1_start);
% generate base matrix
a = eye(p,p);
a = [a(first_1_start:p,:);a(1:first_1_start-1,:)];
% generate H matrix
H = [];
for row = 1:tc
    current_row = [];
    for cl = 1:tr
        current_row = [current_row,a^((row-1)*(cl-1))];
    end
    H = [H;current_row];
end
% remove dependent rows
% this need to be update with mod2 operation
[Q R] = qr(H);
H_no_dep = [];
for i = 1:p*tc
    if( abs(R(i,i)) > 1E-9)
        H_no_dep = [H_no_dep;H(i,:)];
    end
end

nearestNds.m

function [Nd , dmin] = Neighbors(G);
% This routine counts neighbors at distances dmin:dmin+19 for binary code G
% Definition of input and internal variables
% G : generator matrix
% Definition of output variables
% Nd : Number of codewords at distances dmin to dmin+19
% dmin : minimum Hamming distance
% EE379A, J. Cioffi
function [Nd, dmin] = neighbors(G);
Nd=zeros(1,20);
dmin = min(sum(G,2));
[limit,~]=size(G);
for d=dmin:dmin+19
    for n=1:limit
        if sum(G(n,:)) == d
            Nd(d-dmin+1) = Nd(d-dmin+1) + 1;
        end
    end
end
G.8.3 LDPC Encoder and Decoder Programs

encoder.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% [rx_bit, coded_bit, message_bit] = encoder(SNR,G,random,message_bit)
%% LDPC Encoder
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Definition of input variables
% SNR : Receiver SNR in dB
% G : Generator matrix k x n
% random : set to 1 for encoder to generate k random input bits
% message_bit : message_bit to be encoded - should be k bits long 1 x k
% : if random is 1, the input message_bit is ignored
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Definition of output variables
% rx_bit : coded_bit + AWGN
% coded_bit : encoded bit
% message_bit : message bit to be encoded
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [rx_bit, coded_bit, message_bit] = encoder(SNR,G,random,message_bit)

[k,n] = size(G);
if(random == 1)
    message_bit = round(rand(1,k));
end
noise = randn(1,n)/sqrt(10^(SNR/10));
coded_bit = mod(message_bit*G,2);
modulated_bit= coded_bit*2-1;
rx_bit = modulated_bit + noise;  %% sending -1 only

ldpc_decoderspa.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% function [decoded_bits llr_bits iter]=ldpc_decoder_spa(H,ybits,max_iter,var,fast)
%% SPA LDPC Decoder
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Definition of input variables
% H : parity check matrix
% ybits : received signal y
% max_iter : maximum number of iterations
% var : noise variance (constraint decoders must know this)
% fast : 1: stop at good parity, 0: run till maximum iteration.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Definition of output variables
% decoded_bit : decoded bits
% llr_bit : llr of each input bit

[k,n] = size(G);
if(random == 1)
    message_bit = round(rand(1,k));
end
noise = randn(1,n)/sqrt(10^(SNR/10));
coded_bit = mod(message_bit*G,2);
modulated_bit= coded_bit*2-1;
rx_bit = modulated_bit + noise;  %% sending -1 only
function [decoded_bits,llr_bits, iter ] = ldpc_decoder_spa(H,ybits,max_iter,var,fast)

[row col] = size(H);
iter = 0;
pass = 0;
llr_int = zeros(1,col); % intrinsic
llr_b2c = zeros(row,col); % bit node to check node
llr_c2b = zeros(row,col); % check node to bit node
tr = (-1).\mod(sum(H'),2);

% intrinsic bit probobility
for i = 1:col
    llr_int(i) = ((ybits(i)+1)^2 - (ybits(i)-1)^2)/2/var;
end
llr_bits = llr_int;
decoded_bits(i) = (sign(llr_bits(i))+1)/2;

while(iter < max_iter && (pass ~= 1 || fast == 0) )
    iter = iter + 1;
    % update bit note to check node LLR
    for j = 1:col
        row_ptr = find(H(:,j));
        for i = 1:length(row_ptr)
            llr_temp =llr_int(j);
            for k = 1:length(row_ptr)
                if( k ~= i)
                    llr_temp = llr_temp + llr_c2b(row_ptr(k),j);
                end
            end
            llr_b2c(row_ptr(i),j) = llr_temp;
        end
    end
    % update probibilty of check equation
    for i = 1:row
        col_ptr = find(H(i,:));
        for j = 1:length(col_ptr);
            X = 1;
            for k = 1:length(col_ptr);
                if( k ~= j)
                    X = X*tanh(llr_b2c(i,col_ptr(k))/2);
                end
            end
            llr_c2b(i,col_ptr(j)) = tr(i)*2*atanh(X);
        end
    end
    % check result
    for i=1:col
        llr_bits(i) = llr_int(i)+sum(llr_c2b(:,i));
    end
end
decoded_bits(i) = (sign(llr_bits(i))+1)/2;
end
pass = 1-sum(mod(decoded_bits*H',2));
end

Routine to call decoder ldpc_main.m  The program main calls the decoder

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This is the main LDPC simulation bench
%% This sets up to run the (529,462) code
%% This will take about 10 hrs to run
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% EE379, Chien-Hsin Lee, 06/2006 ; consequent edits J. Cioffi
clear;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Define LDPC Code Here

prime = 23;
col_weight = 3;
row_weight = 23;
H = get_h_matrix(prime,row_weight,col_weight,2);
[HS GS] = systematic(H);
[r n] = size(Hs);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Define Simulation Condition

iteration = 100;  %% max number of iteration
block_error = 10;  %% number of block error for each sample point
SNR = [6:0.5:8];  %% SNR points
var = 1./10.^(SNR/10);  %% variance of noise
random = 1;  %% 1:generate message bit for simulation
fast = 0;  %% 1:stop when parity is right

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Initial Program Variables
%% You should not need to touch this

steps = length(SNR);
num_bit_err = zeros(1,steps);
num_block_err = zeros(1,steps);
um_block = zeros(1,steps);
iter = zeros(1,steps);
fail_coded_bits = [];
fail_receive_bits = [];
fail_decoded_bits = [];
randn('seed',12345678);
randn('seed',98765432);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Main Routine

for i = 1:steps
while(num_block_err(i) < block_error)
    [rx_bit coded_bit message_bit] = encoder(SNR(i),Gs,random,zeros(1,n-r));
    [decode_bits llr iter_temp] = ldpc_decoder_spa(Hs,rx_bit,iteration,var(i),fast);
    num_block(i) = num_block(i) + 1;
    iter(i) = iter(i) + iter_temp;
    current_bit_err = sum(abs(decode_bits - coded_bit));
    if(current_bit_err ~= 0)
        num_bit_err(i) = num_bit_err(i) + current_bit_err;
        num_block_err(i) = num_block_err(i) + 1;
        fail_coded_bits = [fail_coded_bits; coded_bit];
        fail_receive_bits = [fail_receive_bits;rx_bit];
        fail_decoded_bits = [fail_decoded_bits;decode_bits];
    end
end

t1 = clock;

plot(SNR(1:steps),log10(num_bit_err(1:steps)./num_block(1:steps)./n),...
     SNR(1:steps),log10(num_block_err(1:steps)./num_block(1:steps)));
legend('BER','BLER');
grid;
Bibliography
