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Appendix D

Minimum Mean-Square Estimation,
Normed Vector Spaces, Spectral
Factorization, and Filter Realization

Minimum Mean-Square Error (MMSE) Estimation is fundamental to data transmission on channels with
Gaussian noise. For these channels, with proper interpretation, all Shannon results, multi-user optima
and capacity regions, and many suboptimal approximations all have basis in MMSE Theory. This ap-
pendix provides some fundamentals of MMSE that are pertinent to this text’s developments. Chapter
2 uses often MMSE estimates and biases in its multi-user developments, as well as ties MMSE to the
more traditional information-theoretic quantities of entropy and mutual information in the Gaussian
case. Chapter 3 heavily uses MMSE theory for equalization developments and analysis, while Chapter
4’s parallel channel developments fundamentally observe that MMSE estimates of linear weighted sums
are linear weighted sums of the individual estimates, which allows MMSE theory also to govern indepen-
dent parallel channels and multi-dimensional transmission. Chapter 5’s unifying GDFE theory depends
heavily on MMSE theory. Chapter 7’s adaptive systems largely attempt to realize MMSE estimation.

Section D.1 begins with the general MMSE estimate, before focusing rapidly on jointly Gaussian
processes for which this estimate is always a linear function of observed random variables or processes.
The autocorrelation and cross-correlation matrices that have fundamental roles in transmission and also
completely characterize zero-mean Gaussian processes also have formal definition. It also notes that
the so-called “EVM” (error-vector magnitude) that some wireless and cable engineers use (apparently
unknown to them) the mean-square error estimate long earlier used to characterize transmission perfor-
mance. Section D.2 develops the Orthogonality Principal that this text uses throughout to minimize
mean square errors, both for scalar and vector processes. Vector spaces and associated norms for scalars,
vectors, and matrices all have formal definition, as does the matrix norm. This section provides the ba-
sic partial-derivative formulation that assures the simplifying orthogonality principle indeed solves the
MMSE criteria. A useful generalization of the Pythagorean Theorem appears that can often assist un-
derstanding of various transmission SNR results. Section D.2 also details the so-called bias estimate and
the result that pervades transmission theory that namely the “biased” MMSE estimate of a process from
another has a signal to noise ratio that always adds 1 to the unbiased estimate’s SNR, the latter is what
transmission engineers always use as a figure of merit. This fundamentally ties MMSE to transmission.
Section D.3 explores the deep relationship between signal processing transforms and factorizations and
MMSE estimation. This section’s topics include Fourier, Laplace, and D (Z) transforms and in particular
the relationship between scalar spectrum factorization and filter realization that simplifies solutions to
many MSE problems, especially for canonical data transmission and noise whitening. Section D also
explains and derives the famed (scalar) bf Paley-Weiner Criterion. This section also develops Cholesky
factorization as transform’s spectral-factorization finite-length equivalent. All these topics develop from
MMSE theory in this section, reinforcing intuition throughout the text. Section D.4 address a vec-
tor/matrix generalization of Paley Wiener Theory that this text calls MIMO Paley-Weiner, and which
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provides elegant solution generalizations to many MIMO situations of increasing interest. In particular,
this section develops in detail the relationship between MIMO finite space-time vector/matrix infinite-
time/frequency series. Many problems not well understood for transmission in the literature appear here
with solution and examples.
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D.1 General MMSE estimation

Generally, the MMSE estimate of one random variable or process x based on other random variables or
processes, organized in a vector y, is some function x̂ = f(y) that minimizes

arg min
f(y)

E
[
(x− f(y))2

]
. (D.1)

In this text, the quantities x and y have zero mean1. The vector y’s dimensional elements generally
have any organization, which can include time samples, frequency samples, spatial samples or other
dimensional generalizations. The estimate is a function of a given specific random-variable sample
y = v and thus provides a specific estimate f(v) that if averaged over all values for joint distribution of
x and y minimizes the squared difference. Thus, the quantity

e(y)
∆
= x− f(y) (D.2)

is the error, and the quantity

MSE = E
[
|e|2
]

= E
[
|x− f(y)|2

]
(D.3)

is the mean-square error, which averages over all possible joint random possibilities of x and y. The
MMSE estimate has a general form in the following theorem.

Theorem D.1.1 [Minimum-Mean-Square-Error Estimate] The minimum mean-
square-error estimate is generally x̂ = f(y) = E(x/y).
Proof: For any given value of y = v, the conditional mean-square error is

MSE/v = E
[
(x− f(v))2/y = v

]
(D.4)

dMSE

df
= E [2 · < {x− f(v)}] = 0 (D.5)

f(v) = E [x/y = v] . (D.6)

Since (D.6) holds for any y = v, then

E
[
|e|2
]

= Ey [MSE/y = v] , (D.7)

which since all y probability-distribution values are non-negative has minimum when
x̂MMSE = f(y) = E [x/y] for any specific random y observation. The MMSE is thus

σ2
mmse = E

[
|x− E(x/y)|2

]
QED. (D.8)

This entire proof can now repeat with x→ x and E
[
|e|2
]
→ E

[
‖e‖2

]
and partial deriva-

tives taken for each term in (D.5) and this theorem now generalizes to

x̂MMSE(y) = E [x/y] . (D.9)

The MMSE estimate is E(x/y) in general for any x and y distribution(s). Because the expectation
operation E is linear itself, MMSE estimates of linear combinations are the same combinations of the
individual estimates so if

x = α · x1 + β · x2 , (D.10)

then
x̂mmse = α · x̂1 + β · x̂2 . (D.11)

1Any nonzero mean is non-information bearing and can be subtracted from the random process so for instance x →
x− E[x], without altering theoretical analysis.
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D.1.1 Gaussian MMSE, autocorrelation, and cross-correlation

Gaussian and also linear MMSE estimates have two constituent correlation quantities:

Definition D.1.1 [autocorrelation and cross-correlation matrices]

The N ×N autocorrelation matrix for any N -dimensional random vector y is

Ryy
∆
= E [y · y∗] . (D.12)

When N = 1, the autocorrelation matrix becomes simply the random vector’s energy
σ2
y. When stationary random vector process yk has discrete (continuous) time index k

(t), then the autocorrelation matrix becomes itself a time sequence (function)

Ryy,k
∆
= E

[
yl · y∗l−k

]
(D.13)

Ryy(t)
∆
= E [y(u) · y∗(u− t)] . (D.14)

In this case when N = 1, the autocorrelation-matrix sequence becomes the random
process’ autocorrelation function. Similarly, the cross-correlation matrix for any two
Nx- and Ny-dimensional random vectors x and y is the Nx ×Ny matrix

Rxy
∆
= E [x · y∗] . (D.15)

Also, clearly Ryx = R∗xy . When Nx = Ny = 1, the cross-correlation matrix becomes
simply the two random vector’s correlation Rx,y. The cross correlation between a scalar
x and a vector y is thus a 1 × Ny row vector Rxy . When the two jointly stationary
random vector processes xk and yk have discrete (continuous) time index k (or t), then
the cross-correlation matrix becomes itself a time sequence (function)

Rxy,k
∆
= E

[
xl · y∗l−k

]
(D.16)

Rxy(t)
∆
= E [x(u) · y∗(u− t)] . (D.17)

When N = 1, the autocorrelation-matrix sequence becomes the random processes’ cross-
correlation function Rxy(t).

Often AWGN channel noise is Gaussian, which (see Chapter 2) leads to best transmitted signals
also being Gaussian, and then all signals being Gaussian. Thus, the Gaussian distribution’s form has
particular interest in digital transmission. Multivariate Gaussian variables, organized in terms of two
vectors x and y (each with possibly many elements), then depend only on the autocorrelation and
cross-correlation matrices, organized into a single matrix R where

R
∆
= E

{[
x
y

]
[x∗y∗]

}
=

[
Rxx Rxy
Ryx Ryy

]
(D.18)

Definition D.1.2 [Multivariate Gaussian Distribution] It is helpful to provide
both the real and complex forms. The real-valued and complex-valued multivariate
zero-mean-vector Gaussian distributions are, using autocorrelation matrix R in (D.18),

real: p(x,y) = (2π)−
Nx+Ny

2 · |R|−1/2 · e
− 1

2

[x∗y∗]·R−1·

 x
y


(D.19)
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complex: p(x,y) = (π)−[Nx+Ny ] · |R|−1 · e
−

[x∗y∗]·R−1·

 x
y


. (D.20)

The complex case has Nx and Ny as complex dimensions (so twice as many real di-
mensions). The two distributions are indeed equivalent when viewed in terms of this

text’s per-dimensional normalizations. With nonzero mean µ = E
[
x
y

]
=

[
µx
µy

]
,

then

[
x
y

]
→
[
x− µx
y − µy

]
in (D.19) and (D.20).

Singularity: When R is singular, then R =
∑Nr<N
n=1 λn · vnv∗n where λn are the non-

zero eigenvalues and vn are the corresponding eigenvectors; correspondingly λn>Nr = 0.
Singularity means the Gaussian process’s projections on the eigenvvectors corresponding
to zero eigenvalues are deterministic and the process is equal to the mean vector’s pro-
jection on these corresponding eigenvectors with probability 1. With Gaussian channels
Ryy is never singular when the noise is nonsingular |Rnn| > 0. However, Rxx can be
singular in some cases that Chapter 5 studies in detail. Equations (D.19) and (D.20)
for all Gaussian processes remain useful, but with R−1 → R+ (the pseudoinverse - see

Appendix C) and with |R| →
∏Nr
n=1 λn.

For jointly Gaussian random variables and processes, the MMSE estimate is linear in y, which can be
found through somewhat tedious algebra by taking the ratio p(x,y)/p(y) and simplifying to a Guassian
form and reading the expected value:

x̂mmse = E[x/y] = Rxy ·R−1
yy · y . (D.21)

The MMSE estimate’s autocorrelation is

Rx̂x̂ = Rx/y = Rxy ·R−1
yy ·Ryx . (D.22)

The error x− E(x/y) has autocorrelation

Ree = Rxx −Rxy ·R−1
yy ·Ryx

∆
= R⊥x/y . (D.23)

In the case of scalar x = x, then the result is readily seen to be the MMSE2

σ2
mmse

∆
= σ2

x/y = Ex −Rxy ·R−1
yy ·Ryx . (D.24)

When Ryy is singular, then replace inverse with pseudoinverse in this text; however with practical
channels there is always some noise, no matter how small so this singularity is not likely of practical data-
transmission interest. When x corresponds to a two-dimensional QAM constellation with corresponding
error vector e measured and averaged with respect to constellation points, engineers sometimes call the
average value of ‖e‖2 the error vector and then the MSE is the error-vector magnitude. This is the
MSE and nothing more and is superfluous unnecessary nomenclature as MSE was long in use for data
transmission prior to introducing another name for the same thing.

2This appendix will soon show the trace of the matrix Rx/y is corresponding vector MMSE.
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D.2 The Orthogonality Principle and Linear MMSE estimation

This section shows that a linear MMSE estimator with any jointly stationary distributions leads to the
same MMSE-estimate form as in (D.21) - (D.24). This section’s orthogonality principle provides
a simple way to derive such linear MMSE estimates, but also leads to rich intuition, as later used
throughout this text.

The random variable x’s linear MMSE estimate depends on a linear combination of observations of
the random variables {yn=1,...,N}. That linear combination uses parameters wn, with the index n having
one distinct value for each observation of yn that is used. This linear MMSE minimizes

E
[
|e|2
]

(D.25)

where this error is

e
∆
= x−

N−1∑
n=0

wn · yn = x−w · y . (D.26)

N → ∞ without difficulty. The row vector w is not random. The column vector y can be random, as
can be the scalar x. The orthogonality principle determines the values of wn and also generalizes to the
potential of several errors being combined into separately optimized error-vector elements:

Theorem D.2.1 (Orthogonality Principle) The minimum MSE must meet the fol-
lowing scalar condition

E [e · y∗n] = 0 ∀ n = 1, ..., N , (D.27)

or more generally in vector form where the error has Lx components, and yn has Ly
components, as the matrix condition

E


 eLx

...
e1

 · [y∗N ... y1]

 =

 0 ... 0

0
. . . 0

0 ... 0

 = E [e · y∗n] = 0 , (D.28)

where the zeros matrix is Lx × N . Indeed further expanding y∗ =
[
yLy ...y1

]∗
simply

creates a larger Ly · Lx × 1 vector for the principle also applies.

Proof: Writing first the scalar |e|2 = [<(e)]
2

+[=(e)]
2

allows partial MSE differentiation
with respect to both x’s real and imaginary parts for each n. The real and imaginary
derivatives pertinent parts are (realizing that all other wi, i 6= n, will drop from the
corresponding partial derivatives)

er = xr − wr,n · yr,n + wi,n · yi,n (D.29)

ei = xi − wi,n · yr,n − wr,n · yi,n , (D.30)

where subscripts of r and i denote real and imaginary part in the obvious manner. Then,
optimization over wr,n and wi,n yields,

∂|e|2

∂wr,n
= 2er ·

∂er
∂wr,n

+ 2ei ·
∂ei
∂wr,n

= −2 · (er · yr,n + ei · yi,n) = 0 (D.31)

∂|e|2

∂wi,n
= 2er ·

∂er
∂wi,n

+ 2ei ·
∂ei
∂wi,n

= 2 · (er · yi,n − ei · yr,n) = 0 . (D.32)

The desired result is found by taking expectations and rewriting the series of results above
in (D.27)’s form. This can be repeated for each e`, ` = 1, ..., Lx because if the MSE is
generalized to the Lx × Lx matrix of components MSE = trace{E [e · e∗]} = E [e∗ · e].
Since the MSE is quadratic in the parameters wr,n and wi,n for each of these Lx terms
and separable in expanding wr,n → wr,n,`x and wi,n → wi,n,`x `x = 1, ..Lx, this setting
is a global minimum. A final step repeats the same for each index `y = 1, ..., Ly. The
simple aggregating expression is E[e · y∗] = 0. QED.
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If the autocorrelation matrix Ryy is strictly positive-definite, then the linear-MMSE estimator is unique.

D.2.1 Some expansion of linear MMSE to vector estimates

While the scalar estimate follows simply as in Theorem D.2.1, estimates of multi-dimensional error
signals require explanation. This subsection formalizes vector/Hilbert spaces to that objective.

Definition D.2.1 (Vector Space) A vector space V for a scalar field F and for all
vectors v ∈ V has two operations vector addition “+” and scalar multiplication “·”. The
vector addition operation maps V ⊗V → V while scalar multiplication maps F⊗V → V .
The vector space and operations must satisfy the following:

1. closure of vector addition, so that ∀ u ∈ V and v ∈ V , u+ v ∈ V .

2. closure of scalar-vector multiplication, so that ∀ α ∈ F and v ∈ V , α ·v ∈ V .

3. commutativity (u+ v = v + u) and associativity ( [u+ v] +w = u+ [v +w])
of vector addition.

4. existence of vector addition’s zero element 0 ∈ V 3 0 + v = v and inverse
element −v ∈ V 3 v + (−v) = 0.

5. closure of scalar-scalar multiplication, so that ∀ α, β ∈ F and v ∈ V , α·β ·v ∈
V .

6. commutativity and associativity of scalar-scalar multiplication so that
∀ α & β ∈ F and v ∈ V , α · (β · v) = (α · β) · v = β · α · v.
item multiplicative identify 1 3 1 · v = v

7. distributivity of scalar multiplication over vector and field addition, α · (u+v) =
α · u+ α · v and (α+ β) · v = α · v + β · v.

A random vector space will select vectors v ∈ V according to a probability density/distribution p(v),
and then will have autocorrelation Ruu and cross-correlation Rvv matrices respectively. A vector space
may have an infinite number of vector members. Simple examples are the N -dimensional vectors of real
(or complex) numbers, V = RN (CN ), with scalar field of real R and complex C scalars respectively.
Chapter 2 also had vector codewords selected from the vector space of N -dimensional integers (or
Gaussian integers) with finite-field arithmetic and scalar multiplication.

A normed vector space assigns a non-negative real scalar ‖v‖ ∈ R+ to all v ∈ V that measures
length or size.

Definition D.2.2 (Normed Vector Space) A normed vector space has an addi-
tional functional mapping, or norm ‖v‖ ≥ 0, to non-negative real numbers, V → R+,
as well as positive-real scalar-multiplication norm simply written as the absolute value
|α| ≥ 0. The vector norm is ‖v‖ ∀ v ∈ V and has the following properties:

1. satisfaction of the triangle inequality ‖u+ v‖ ≤ ‖u‖+ ‖v‖.
2. uniform scaling ‖α · v‖ = |α| · ‖v‖.
3. unique zero norm (length) ‖v‖ = 0⇔ v = 0.

A normed vector space typically has an inner product 〈x,y〉 between vector elements, and then becomes

a Hilbert space. The inner product in this text will be
∑N
n=1 un · v∗n when the vectors are in CN (or RN ,

and will be a limiting form of this sum (an integral) in the same way used in Chapter 1. Normed vector
spaces allow specification also of a distance between two vectors d(v,u) = ‖v−u‖, which is zero only if

508



the two vectors are equal. A normed vector space is a Hilbert Space if it is complete, which basically
means that any sum of the vector space’s norms is finite; equivalently, it has an inner product that is
less than infinite if both vectors have finite norms.

This text’s far most common norm is the euclidean norm for real or complex vectors:

‖v‖ =

√√√√ N∑
n=1

|vn|2 . (D.33)

However, there are other norms and generally the p-norm is ‖vn‖p =
{∑N

n=1 |vn|p
}1/p

, which is the

eculidean norm for p = 2, the sum of the absolute values for p = 1, and the maximum element magnitude
for p =∞. The euclidean norm aligns particularly well with Gaussian and linear MMSE developments.

A matrix is a collection of column (or row) vectors from a vector space, so vector space properties and
norms apply to each of the columns and therefore to the entire matrix, except the norm would translate
to a set of real numbers. Matrix multiplication also expands the types of operations, but is of course not
commutative. This text however focuses for matrix norm definition only on positive-semi-definite
square matrices:

Definition D.2.3 Matrix norm A matrix norm for an N × N square positive-semi-
definite matrix R is

‖R‖ =
√
trace{R} . (D.34)

This matrix norm satisfies all the properties in Definition D.2.2.

Linear MMSE’s expansion to vectors involves semantic bookkeeping that is notationally convenient.
The error becomes a vector e, which might immediately raise the question of which element to minimize.
However the error vector definition expands to

e = x−W · y , (D.35)

where W becomes an Nx × Ny matrix. Each row of W is a row vector wn that estimates xn from y.
The mean norm is

E
[
‖e‖2

]
=

Nx∑
n=0

|en|2 . (D.36)

The (mean) squared error components are variables separable in that each depends only on its corre-
sponding wn. Minimization of ‖e‖2 is therefore the same as separate minimization of each component.
The orthogonality principle then applies to each, which can be written simply as

W = Rxy ·R−1
yy . (D.37)

Perhaps more interestingly, the minimized error components are also the diagonal elements of

Ree = R⊥x/y = Rxx −Rxy ·R−1
yy ·Ryx , (D.38)

which then clearly has a minimimum
√
trace {Ree} = ‖Ree‖. Linear MMSE is thus the same as

minimizing the error-autocorrelation matrix’s (squared) norm.

Lemma D.2.1 (Generalized Pythagorean Theorem (GPT)) The following holds
for vector MMSE estimation:

Rxx = Ree +Rx̂x̂ . (D.39)

Proof: The proof follows directly from x̂ = RxyR
−1
yy · y and Equation D.38. QED.
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The GPT conveniently allows direct analysis of many Chapter 3 receiver structures’ performance.
The error vector e’s dimensionality equals the dimensionality of x. In this text, transmitted dimensions
may be in time, usually indexed by k for discrete time and infinite or semi-infinite3. N often corresponds
in Chapter 4 and beyond to a frequency index where the basic functions within a symbol are indexed
to frequency. The error vector may also correspond to spatial dimensions l = 1, ..., Lx. Whatever the
index bookkeeping, the Orthogonality Principle and the GPT hold.

The MMSE minimizes the sum of the eigenvalues of Ree = Q ·Λe ·Q∗ where Λe is a diagonal matrix
of non-negative real eigenvalues (see Matlab eig command) and QQ∗ = Q∗Q = I, because the trace is
the sum of the eigenvalues. This is immediately evident because multiplication by Q does not affect the
error vector’s norm ‖e′‖ = ‖Q · e‖ = ‖e‖. So the MMSE estimator matrix then would be

W̃ = Q ·W , (D.40)

which is still now separable in the ẽ uncorrelated components. This means the determinant |Ree| has
also been minimized because the product of the eigenvalues is the determinant (as should be obvious from
observing |Q| = 1), and indeed is also separable multiplicatively. Thus, often MMSE vector problems
are written in terms of minimizing the determinant of the error autocorrelation matrix, but this is the
same as minimizing the sum of component MSE’s.

Theorem D.2.2 (MMSE Equivalence of Trace and Determinants) MMSE
matrix-trace minimization is equivalent to minimization of the MMSE matrix determi-
nant. Singularity:. When a matrix is singular, the determinant in the MMSE sense
used here means the product of the non-zero eigenvalues. The zero eigenvalues do not
contribute to MMSE as is clear they do not contribute to the trace of the matrix. Proof:
The preceding development is the proof. QED.

D.2.1.1 The Matrix AWGN

For the matrix AWGN forward channel,

y = H · x+ n , (D.41)

and the MMSE estimation creates a backward channel

x = W · y + e . (D.42)

W and H relate through
W = Rxx ·H∗ [Rnn +H ·Rxx ·H∗]−1

. (D.43)

Similarly

H = Ryy ·W ∗
[
Ree +W ·Ryy ·W ∗

]−1
. (D.44)

With given Rxx = R
1/2
xx ·R

∗/2
xx and RnnR

1/2
nn ·R

∗/2
nn, Appendix C’s singular value decomposition (SVD)

and pseudoinverse when R
1/2
nn is singular in unusual cases related to worst-case noise) applies to

H̃
∆
= R

−1/2
nn ·H ·R

1/2
xx = F · Λ ·M∗ , (D.45)

This admits normalized noise/iinput random vectors y′ = R
−1/2
nn · y (with Rn′n′ = I) and x = R

1/2
xx ·u

(with Ruu = I), with equivalent forward channel:

y′ = H̃ · u+ n′ (D.46)

3sometimes a maximum number of time dimensions may be provided as N corresponding to a single transmission stream
within a symbol, but sometimes the index k corresponds to a symbol and so there may be up to KN dimensions in a
concatenation of K successive N -dimensional symbols.
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and corresponding backward channel, with W̃
∆
= R

−1/2
xx ·W ·R1/2

nn,

u = W̃ · y′ + e′ . (D.47)

W̃ = R
−1/2
xx ·W ·R

−1/2
nn is the MMSE estimator for u in terms of y′ because MMSE estimates are linear.

In terms of the SVD quantities, simple algebra leads to

W̃ = M · Λ∗ · [I + ΛΛ∗]
−1 · F ∗ , (D.48)

which associates a SNR/(1 + SNR) like character to the backward channel with the same SVD, where
the diagonal elements of Λ effectively define this ratio for each dimension. This is an example of bias (the
F and M matrices are 1-to-1 and do not change energy). The backward channel has an SVD that reverses

the role of the same F and M from H̃ with a set of SNR-like diagonal elements. Thus estimating the
channels root eigenmodes fully completes the symmetry of forward and backward channels. Equivalently,
noise-whitening of y also completes the symmetry.

D.2.1.2 MMSE Matrix SNR

A matrix SNR at the forward MMSE channel output is

SNRout = Ryy ·R−1
nn . (D.49)

An interpretation of matrix SNR’s in MMSE are the two expression lists for SNRmmse and SNRout:

Ree = Rxx −Rxy ·R−1
yy ·Ryx (D.50)

= Rxx −W ·H ·Rxx (D.51)

= [I −W ·H] ·Rxx (D.52)

= Rxx · [I −H∗ ·W ∗] (D.53)

Rxx ·R−1
ee = [I −W ·H]

−1
(D.54)

R−1
ee ·Rxx = [I −H∗ ·W ∗]−1

(D.55)
∆
= SNRmmse (D.56)

The two expressions in (D.54) and (D.55) always have nonsingular matrices in the inversions, and further
either is a valid SNR (even if not equal). The SNR of interest is

SNRmmse = |SNRmmse| =
|Rxx|
|Ree|

=
1

|I −W ·H|
. (D.57)

For the forward channel (with pseudoinverse used on Rxx if singular)

Rnn = Ryy −Ryx ·R−1
xx ·Rxy (D.58)

= Ryy −H ·W ·Ryy (D.59)

= [I −H ·W ] ·Ryy (D.60)

= Ryy · [I −W ∗ ·H∗] (D.61)

Ryy ·R−1
nn = [I −H ·W ]

−1
(D.62)

while for the backward channel equally

R−1
ee ·Rxx = [I −W ∗ ·H∗]−1

(D.63)
∆
= SNRout (D.64)

Again, the determinant is the same

|SNRout| =
∣∣Ryy∣∣
|Rnn|

=
1

|I −H ·W |
. (D.65)
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Appendix C lists Sylvesters Determinant Identity, which also becomes clear from Chapter 2’s mutual
information symmetry, which is

|I +A ·B| = |I +B ·A] , (D.66)

so therefore
SNRout = SNRmmse . (D.67)

This simple relationship basically means the best data rate achievable is the same for the forward and
backward channel.

D.2.2 MMSE estimate bias

A biased estimate of x has
E [x̂/x] 6= x . (D.68)

If the two are equal, the estimate is unbiased. MMSE estimates always have bias if they correspond to
any Gaussian (non-zero) noise channel. This follows direct from

E [x̂mmse/x] = Rxy ·R−1
yy · E [y/x] (D.69)

= Rxy ·R−1
yy ·H · x (D.70)

= Rxy ·R−1
yy ·Ryx ·R

−1
xx · x (D.71)

= Rx̂x̂ ·R
−1
xx · x . (D.72)

Since the estimate autocorrelation matrix is not equal (unless the error vector is identically zero, which
only happens with no noise), MMSE estimates have bias. (Any singular dimensions in Rxx are discarded
and not of interest in estimation, equivalently use the pseudoinverse.) The Generalized Pythagorean
Theorem D.2.1 then provides with Rx̂x̂ = Rxx −Ree

E [x̂mmse/x] =
(
I −Ree ·R−1

xx
)
· x . (D.73)

For the scalar case. x = x, Equation (D.73) relates, with SNRmmse
∆
= Ēx

σ̄2
mmse

E [x̂mmse/x] =

(
1− σ2

mmse

Ex

)
· x (D.74)

= (1− 1

SNRmmse
) · x (D.75)

=
SNRmmse − 1

SNRmmse
· x < x , (D.76)

confirming the bias. MMSE estimates reduce the noise slightly, at the expense of some bias, so that the
trade-off between bias and noise reduction is optimum in the MMSE sense. Receivers can remove bias
in anctipcation of ML detection by

x̂ML =
SNRmmse

SNRmmse − 1
· x̂mmse = x . (D.77)

The vector/MIMO case requires some caution, but the same bias exists. The vector x decomposes into
its eigenvalue decomposition

x = Qu , (D.78)

with unitary Q that satisfies QQ∗ = Q∗Q = I, such that

Rxx = Q ·Ruu ·Q∗ (D.79)

is the autocorrelation matrix’ eigenvalue decomposition, with eigenvalues as the diagonal entries En on
the diagonal matrix Ruu. Since MMSE estimates are linear

x̂mmse = Q · ûmmse . (D.80)
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and
e′ = Q∗ · e . (D.81)

The matrix Re′e′ is also diagonal in this case since Ree = Q·Re′e′ ·Q∗ is also a valid eigen-decomposition
for Re′e′ with diagonal elements λe,n = σ2

mmse,n. Thus the MMSE estimation SNR’s for the vector
problem are then:

SNRmmse,n =
En

σ2
mmse,n

(D.82)

with corresponding indices n matched for n = 1, ..., N .
The corresponding bias matrix is then

E [ummse/u] = Diag

{
SNRmmse,n − 1

SNRmmse,n

}
· u . (D.83)

Thus, the bias removal independently takes each dimension of the MMSE estimate and multiplies by

xunbiased,n =
SNRmmse,n

SNRmmse,n − 1
· x̂mmse,n . (D.84)

This is bias exists in all MMSE estimates and its removal in general as above when Q is unitary.
However, Rxx can be maintained with other invertible matrices A such that Rxx = A · Ruu · A∗,
where A may not be unitary. In this case, the MMSE estimate of x remains Aû, but the error vector
may no longer have diagonal Re′e′ . Chapter 5’s GDFE will address this situation, where a similar
SNRbias = SNRno−bias + 1 exists, but specifically only after additional receiver processing removes
the remaining interference between dimensions. Simple per-dimensional bias removal in the MIMO case
necessitates the MMSE error-vector autocorrelation matrix is diagonal.
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D.3 Spectral Factorization and Scalar Filter Realization

This section describes scalar filter-based autocorrelation realization via spectral factorization. The re-
alized filters will be causal, causally invertible (minimum phase), and monic. Such realization invokes
the so-called Paley-Wiener Criterion (PWC) that is constructively developed and proven as part of the
realization process, basing the proof on discrete sequences but covering also continuous signals4. Sec-
tion D.4 generalizes these filters and/or process and Paley Wiener criterion to MIMO (matrix filters
and/or processes), which will require understanding Cholesky Factorization of simple matrices first from
Subsection D.3.6 that ends this wection and precedes Section D.4.

D.3.1 Some Transform Basics: D-Transform and Laplace Transform

This subsection addresses use of D-transform notation for sequences5:

Definition D.3.1 [D- Transforms] A sequence xk ∀ integer k ∈ (−∞,∞) has D-
Transform X(D) =

∑∞
k=−∞ xk ·Dk for all D ∈ Dx, where Dx is the region of conver-

gence of complex D values for which the sum X(D) converges, and X(D) is analytic6 in
Dx. The inverse transform is a clockwise line/contour integral around any closed circle
in the region of convergence xk = 1

2π

∮
D∈Dx

X(D) ·D1−k · dD.7

The sequence xk can be complex. The symbol rate will be presumed T = 1 in this appendix8. The
sequence x∗−k has a D-Transform X∗(D−∗) =

∑∞
k=∞ x∗kD

−k. When the region of convergence includes
the unit circle, the discrete-time sequence’s Fourier transform exists as X(e−ω) = X(D)|D=e−ω , and
such sequences are considered to be “stable” or “realizable” (non-causal sequencies become realizable
with sufficient delay, or infinite delay in some limiting situations).

A sufficient condition for the discrete-time sequence’s Fourier transform to exist (the sum X(D)
converges) is that the sequence itself be absolutely summable, meaning

∞∑
k=−∞

|xk| <∞ , (D.85)

or equivalently the sequence belongs to the (Hilbert infinite-dimensional vector) space of sequences L1.
Another sufficient condition is that the sequence belongs to L2 or has finite energy according to

∞∑
k=−∞

|xk|2 <∞ . (D.86)

The similarity of the form of transform and inverse then allows equivalently that the inverse Fourier
Transform ( 1

2π

∫ π
−πX (eω) eωk · dω) exists if:

1

2π

∫ π

−π

∣∣X(e−ω))
∣∣ · dω <∞ , (D.87)

or if
1

2π

∫ π

−π

∣∣X(e−ω))
∣∣2 · dω <∞ . (D.88)

4In both cases, these proofs are applicable to deterministic magnitude-squared functions or to stationary random
processes with consequently non-negative real power spectra.

5The reader may insert Z−1 for D to relate to other developments where Z transforms are used.
8The generalization for T 6= 1 is addressed in the specific text sections of this chapter and later chapters when necessary.

For instance, see Table ?? for the generalization of transforms under sampling for all T . Sampling should not be confused
with the bi-linear transform: the former corresponds to conversion of a continuous waveform to discrete samples, while
the latter maps filters or functions from/to continuous to/from discrete time and thus allows use of continuous- (discrete-)
time filter realizations in the other discrete- (continuous-) time domain.
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While xk ∈ L1 or xk ∈ L2 are sufficient conditions, this text uses non-L1-nor-L2 functions that can
have Fourier transforms. These“generalized” functions include the Dirac Delta function δ(t) or δ(ω),
so that for instance cos(ω0k) has Fourier Transform π [δ(ω − ω0) + δ(ω + ω0)], or the series xk = 1 has
transform 2πδ(ω), even though neither of the sums above in Equations (D.85) and (D.86) converge for
these functions. These types of generalized-function-assisted Fourier Transforms are “on the stability
margin” where values of D in a convergence-region series that approaches closely the unit circle (outside,
but not on) so that existence criteria have limiting values in (D.87) or (D.88) in a “generalized-function”
sense.

A continuous-time sequence x(t) has a Laplace Transform X(s) defined over a convergence region
Sx as

Definition D.3.2 [Laplace Transform] A function x(t) has Lapace-Transform X(s) =∫∞
−∞ x(t)e−stdt, which converges/exists for all s ∈ Sx, where Sx is the convergence

region of complex s ∈ C values. The inverse transform is 1
2π

∮
X(s) · est · ds when the

closed contour of integration is in Sx.

The time function x(t) can be complex. The function x∗(−t) has a LapaceTransform
∫∞
−∞ x∗(−t)e−stdt =

X∗(−s∗). When the region of convergence includes the ω axis, the Fourier transform exists as X(ω) =
X(s)|s=ω, and such functions are considered to be “stable” or “realizable” (non-causal functions become
realizable with sufficient delay, or infinite delay in some limiting situations).

A sufficient condition for the continuous Fourier transform to exist (the integral converges) is that
the function be absolutely integrable, meaning∫ ∞

−∞
|x(t)| · dt < ∞ , or equivalently (D.89)

1

2π

∫ ∞
−∞
|X(ω)| · dω < ∞ , (D.90)

or equivalently that the function x(t) belongs to the space of continuous functions L1. Another sufficient
condition is that function x(t) belongs to L2 or has finite energy according to∫ ∞

−∞
|x(t)|2 · dt < ∞ , or equivalently (D.91)

1

2π

∫ ∞
−∞
|X(ω)|2 · dω < ∞ (D.92)

Similar to the discrete-time D-Transform, “generalized” functions complete the capability to handle
continuous Fourier Transforms that are “on the stability margin” where values of s in a convergence-
region sequence arbitrarily close to the ω axis (left of, but not on this axis) will converge so the criteria
satisfy (D.91) or (D.92) in a limiting or generalized sense.

D.3.2 Autocorrelation and Non-Negative Spectra Magnitudes

Of particular interest in this text, and generally in digital communication, are the autocorrelation func-
tions and associated power spectra for stationary and wide-sense stationary processes. These concepts
are revisited briefly here for discrete processes before returning to filter realization of a given specified
non-negative Fourier Transform magnitude.
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Definition D.3.3 [Autocorrelation and Power Spectrum for Sequences] If xk is any
stationary complex sequence, its autocorrelation function is rxx,j = E[xkx

∗
k−j ] with

D-Transform Rxx(D); symbolically9

Rxx(D)
∆
= E

[
X(D) ·X∗(D−∗)

]
. (D.93)

By stationarity, rxx,j = r∗xx,−j and Rxx(D) = R∗xx(D−∗). The power spectrum of
a stationary sequence is the Fourier transform of its autocorrelation function, which is
written as

Rxx(e−ω) = Rxx(D)|D=e−ω , −π < ω ≤ π , (D.94)

which is real and nonnegative for all ω. Conversely, any function R(e−ω) that is real
and nonnegative over the interval {−π < ω ≤ π} is a power spectrum, and has an
autocorrelation function satisfying R(D) = R∗(D−∗).

Generally, conjugate symmetric sequences with ak = a∗−k have real Fourier transforms A(e−ω) ∈ R
that however can be negative. Thus, a necessary and sufficient condition to be an autocorrelation
sequence is that A(e−ω) ≥ 0, or a positive real sequence. The term “positive real” used by mathe-
maticians should not be confused to mean that each time-domain sequence value is positive and real10.

The quantity E
[
|xk|2

]
is Ex, or Ēx per dimension, and can be determined from either the autocor-

relation function or the power spectrum as follows:

Ex = E
[
|xk|2

]
(D.95)

= rxx,0 (D.96)

=
1

2π

∫ π

−π
Rxx(e−ω)dω . (D.97)

If the matrix sequence Rk, for instance perhaps formed as the inverse transform of a fixed filter
F−1(H(e−ω) ·H∗(eω)), is deterministic, then the averages are not necessary. The power spectra is then

essentially the magnitude squared of the Fourier Transform R(e−ω)
∆
= |H(e−ω)|2 ≥ 0 for discrete time.

These Fourier Transforms’ magnitudes can be thought of also as power spectra, and the corresponding
inverse transforms as autocorrelation functions in this text.

Definition D.3.4 [Autocorrelation and Power Spectrum for Continuous-time Func-
tions] If x(t) is any stationary (or WSS, see Chapter 1’s Appendix A) complex function,
its autocorrelation function is rxcxc(t) = E[xc(u)x∗c(u − t)] with Laplace Transform
Rxcxc(s); symbolically11

Rxcxc(s)
∆
= E [X(s) ·X∗(−s∗)] . (D.98)

By stationarity, rxcxc(t) = r∗xcxc(−t) and Rxcxc(s) = R∗xcxc(−s
∗). The power spec-

trum of a stationary continuous-time process is the Fourier transform of its autocorre-
lation function, which is written as

Rxcxc(ωc) = Rxcxc(s)|s=ωc , −∞ < ωc ≤ ∞ , (D.99)

which is real and nonnegative for all ωc. Conversely, any function R(ω) that is real and
nonnegative over the interval {−∞ < ωc ≤ ∞} is a power spectrum and has autocorre-
lation function r(t) = r∗(−t).

10Positive values for all discrete time instants means that the corresponding Fourier transform is an “autocorrelation”
function of frequency.
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Generally, conjugate symmetric functions with a(t) = a∗(−t) have real Fourier transforms A(ω) ∈ R
that however can be negative. Thus, a necessary and sufficient condition to be an autocorrelation
sequence is that A(ω) ≥ 0, or a positive real sequence. The term “positive real” used by mathematicians
should not be confused to mean that each time-domain function value is positive and real12, but instead
refers to the Fourier Transform being “positive real.”

The quantity E
[
|xc(t)|2

]
is Px, or the power of the random continuous-time process, and can be

determined from either the autocorrelation function or the power spectrum as follows:

Px = E
[
|xc(t)|2

]
(D.100)

= rxcxc(0) (D.101)

=
1

2π

∫ ∞
−∞

Rxcxc(ωc) · dωc . (D.102)

If the sequence in question (a fixed filter for instance) is deterministic, then the averages are not
necessary above. The power spectra is then essentially the magnitude squared of the Fourier Transform

R(ωc)
∆
= |Xc(ωc)|2 ≥ 0 for continuous time. These Fourier Transforms’ magnitudes can viewed as power

spectra, and the corresponding inverse transforms as autocorrelation functions in this text.

D.3.3 The Bilinear Transform and Spectral Factorization

This section denotes a continuous-time function’s Fourier Transform radian frequency by ωc while the
discrete-time sequence’s Fourier Transform variable will be ω (with no subscript of c). Similarly all
continuous-time quantities will use a subscript of c to avoid confusion with discrete time. For the
transforms, if a transform X(D) or Xc(s) exists in their respective regions of convergence, then the
transforms eX(D) and eXc(s) also exist in that same region of convergence13. Similarly then, ln(X(D))
and ln(Xc(s)) also have the same regions of convergence.

A filter-design technique for discrete-time filters uses what is known as the “bi-linear” transform to
map a filter designed in continuous time into a discrete-time filter (or vice versa):

Definition D.3.5 [Bilinear Transforms] The bilinear transform maps between
discrete-time D Transforms and continuous-time Laplace Transforms according to

s =
1−D
1 +D

(D.103)

and conversely

D =
1− s
1 + s

. (D.104)

The bilinear transform can also relate discrete-time and continuous-time Fourier Transforms by in-
serting D = e−ω and s = ωc. The ωc (complex) axis from 0 to ±∞ corresponds to mapping D = e−ω

along the unit circle (centered at origin of D plane) from the (real, imaginary) D-plane point [1, 0] of
0 radians to the point of π radians (or [−1, 0]) clockwise for positive ωc (counter clockwise for negative
ωc). This blinear transform scales or compresses the infinite range of frequencies ωc ∈ (−∞,∞) for the
continuous-time Fourier Transform to the finite range of frequencies ω ∈ [−π, π] for the discrete-time
Fourier Transform. The bilinear transform does not correspond to sampling (and why T = 1 here to
avoid confusion) to go from continuous time to discrete time. The filter designer needs to convert the

12Positive values for all time means that the corresponding Fourier transform is an “autocorrelation” function of fre-
quency.

13This follows from the derivative of ef(x) for any function f(x) is ef(x) · f ′(x) so if the function existed at x, then
ef(x) also exists at all argument values, and then since f ′(x) also exits, then so does the derivative. This argument can be
recursively applied to all successive derivatives that of course exist for f(x) in its domain of convergence.
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filter cut-off frequencies with this compression/scaling in mind. A stable design in continuous time cor-
responds to all poles on/in the left-half plane of s (or the region of convergence includes, perhaps in
limit, the ωc axis). These poles will map (with the Bilinear Transform’s frequency-scale conversion)
into corresponding points through the bilinear transform in the region outside (or in limiting sense on)
the unit circle |D| = 1, and vice-versa. Similarly a minimum-phase design (all poles and zeros in LHP)
will map to all poles/zeros outside the unit circle, and vice-versa.

For the Fourier Transform, the blinear transformation maps frequency according to

ωc =
1− eω

1 + eω
(D.105)

=  tan
(ω

2

)
(D.106)

ω = 2 arctan(ωc) (D.107)

dω =
dωc

1 + ω2
c

. (D.108)

The spectral factorization of a discrete-time autocorrelation function’s D-Transform is:

Definition D.3.6 [Factorizability for Sequences] An autocorrelation function Rxx(D),
or equivalently any non-negative real Rxx(eω) so that rk = r∗−k, will be called factoriz-
able if it can be written in the form

Rxx(D) = Sx,0 ·Gx(D) ·G∗x(D−∗), (D.109)

where Sx,0 is a finite positive real number and Gx(D) is a canonical filter response. A
filter response Gx(D) is called canonical if it is causal (gx,k = 0 for k < 0), monic
(Gx(s = 0) = 1), and minimum-phase (all of its poles and zeros are outside or on
the unit circle). If Gx(D) is canonical, then G∗x(D−∗) is anticanonical; i.e., anticausal,
monic, and maximum-phase (all poles and zeros inside or on the unit circle).

The region of convergence for factorizable Rxx(D) clearly includes the unit circle, as do the regions

for both Gx(D) and G∗x(D−∗). If Gx(D) is a canonical response, then ‖gx‖2
∆
=
∑
j |gx,k|2 ≥ 1, with

equality if and only if Gx(D) = 1, since Gx(D) is monic. Further, the inverse also factorizes similarly
into

R−1
xx (D) = (1/Sx,0) ·G−1

x (D) ·G−∗x (D−∗) . (D.110)

Clearly if Rxx(D) is a ratio of finite-degree polynomials in D, then it is factorizable (simply group
poles/zeros together for inside and outside of the circle - any on unit circle will also appear in conjugate
pairs so easily separated). For the situation in which Rxx(D) is not already such a polynomial, the
next section generalizes through the Paley-Wiener Criterion. Also, if Rxx(D) is factorizable, then the

corresponding Rxcxc(s) = Rxx

(
1−s
1+s

)
is also factorizable into

Rxcxc(s) = Sxc,0 ·Gxc(s) ·G∗xc(−s
∗) . (D.111)

Definition D.3.7 [Factorizability for Continuous Functions] An autocorrelation func-
tion Rxcxc(s), or equivalently any non-negative real power spectrum Rxcxc(ω) so that
r(t) = r∗(−t), will be called factorizable if it can be written in the form

Rxcxc(s) = Sxc,0 ·Gxc(s) ·G∗xc(−s
∗), (D.112)
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where Sxc,0 is a finite positive real number and Gxc(s) is a canonical filter response. A
filter response Gxc(s) is called canonical if it is causal (gxc(t) = 0 for t < 0), monic
(gxc(0) = 1), and minimum-phase (all of its poles and zeros are in the left half plane).
If Gxc(s) is canonical, then G∗xc(−s

∗) is anticanonical; i.e., anticausal, monic, and
maximum-phase (all poles and zeros inside in the right half plane).

The region of convergence for factorizable Rxcxc(s) clearly includes the ωc axis, as do the regions
for both Gxc(s) and G∗xc(−s

∗).

If Gxc(s) is a canonical response, then ‖gxc‖2
∆
=
∫∞
−∞ |gxc(t)|

2dt = 1
2π

∫∞
−∞ |Gxc(ω)|2dω. Further, the

inverse also factorizes similarly into

R−1
xcxc(s) = (1/Sxc,0) ·G−1

xc (s) ·G−∗xc (−s∗) . (D.113)

Clearly if Rxx(s) is a ratio of finite-degree polynomials in s, then it is factorizable (simply group
poles/zeros together for left and right half planes - any on imaginary axis will also appear in conjugate
pairs, and so are easily separated). When not already such a polynomial, the next section generalizes
this situation through the Paley-Wiener Criterion.

D.3.4 The Paley-Wiener Criterion

Minimum-phase signals or filters are of interest in data transmission not only because they are causal
and admit causal invertible inverses (one of the reasons for their study more broadly in digital signal
processing) but because they allow best results with Decision Feedback as in Section ??. These minimum-
phase filters are also useful in noise whitening.

Calculation of Sx,0 for a factorizable D-Transform follows Equations (??) to (??) in Section ?? as

Sx,0 = e
1
2π

∫ π
−π ln[Rxx(eω)]·dω or (D.114)

ln (Sx,0) =
1

2π

∫ π

−π
ln [Rxx(eω)] · dω , (D.115)

which has components corresponding to the last two terms in (D.109) integrating to zero because they
are periodic with no constant components and being integrated over one period of the fundamental
frequency. The integral in (D.115) must be finite for the exponent in (D.114) to be finite (also, any
exponent of a real number is a real positive number, so Sx,0 > 0 and real, consistent with the power
spectral density). The integral of a power spectral density’s natural log is fundamental in filter realization
and in the Paley Wiener Criterion to follow. Again, Dx is the same for Rxx(D) as for ln [Rxx(D)] and
includes the unit circle; this also means the region of convergence for ln [Gx(D)] also is the same as for
Gx(D) and includes the unit circle. Further the region of convergence for G−1

x (D) also includes the unit
circle and is the same as for ln

[
G−1
x (D)

]
.

The calculation of S−1
x,0 has a very similar form to that of Sx,0:

S−1
x,0 = e−

1
2π

∫ π
−π ln[Rxx(eω)]·dω or (D.116)

ln
(
S−1
x,0

)
= − 1

2π

∫ π

−π
ln [Rxx(eω)] · dω , (D.117)

Because (D.116) and (D.117) are similar, just differing in sign, and because any functions of Gx
(including in particular ln or | • |) are all periodic, factorizability also implies

1

2π

∫ π

−π
|ln [Rxx(eω)]| · dω <∞ (D.118)

(or the function ln [Rxx(D)] exists because the autocorrelation in L1 is absolutely integrable). Essentially
this integral’s finite value corresponds to a factorizable Rxx(D) and means that the sequence’s Fourier
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Transform has no frequencies (except point frequencies of non-zero measure) at which it can be either
zero or infinite. The non-infinite is consistent with the basic criterion (D.85) to be absolutely integrable,
but the the non-zero portion corresponds intuitively to saying any filter that has some kind of “dead
band” is singular. Any energy in these singular bands would be linear combinations of energy at other
frequencies. Singular bands thus carry no new information, and can be viewed as useless: A signal with
such a dead band is wasting energy on components transmitted already at other frequencies that exactly
cancel. A filter with such a dead band would block any information transmitted in that band, making
reliable data-detection/communication impossible (kind of an inverse to the reversibility concept and
theorem in Chapter 1). Such a filter would not be reversible (causally or otherwise). Both situations
should be avoided. Section ?? deals with such singularity far more precisely.

The following Paley-Wiener Theorem from discrete-time spectral factorization theory formalizes when
an autocorrelation function is “factorizable.” The ensuing development will essentially prove the the-
orem while developing a way to produce the previous subsection’s factors Gx(D) and thus G∗x(D−∗).
This development also finds a useful way to handle the continuous-time case, which can be useful in
noise-whitening. The reader is again reminded that any non-negative (real) spectrum and
corresponding inverse transform is a candidate for spectral factorization.

Theorem D.3.1 [Paley Wiener Criterion] If Rxx(e−ω) is any power spectrum such
that both Rxx(e−ω) and lnRxx(e−ω) are absolutely integrable over −π < ω ≤ π, and
Rxx(D) is the corresponding autocorrelation function, then there is a canonical discrete-
time response Gx(D) that satisfies the equation

Rxx(D) = Sx,0 ·Gx(D) ·G∗x(D−∗), (D.119)

where the finite constant Sx,0 is given by

lnSx,0 =
1

2π

∫ π
T

− πT
lnRxx(e−ω)dω . (D.120)

For Sx,0 to be finite, Rxx(e−ω) must satisfy the discrete-time Paley-Wiener Crite-
rion (PWC)

1

2π

∫ π
T

− πT
| lnRxx(e−ω)|dω <∞ . (D.121)

The PWC’s continuous-time equivalent of this PWC is that the Fourier Transform of
the continuous-time autocorrelation function is factorizable

Rxcxc(s) = Sxc,0 ·Gxc(s) ·G∗xc(−s
∗) , (D.122)

where Gxc(s) is minimum phase (all poles and zeros in the left half plane or on axis in
limiting sense) and “monic” gxc(t)|t=0 = 1, whenever

1

2π

∫ ∞
−∞

| lnRxcxc(ωc)|
1 + ω2

c

dωc <∞ . (D.123)

Constructive Proof: The equivalence of the two PW criteria in (D.121) and (D.123)
(discrete- and continuous-time) follows directly from Equations (D.105) to (D.108). However,
it remains to show that the condition is necessary and sufficient for the factorization to exist.
The necessity of the criterion followed previously when it was shown that factorizability lead
to the PWC being satisfied. The sufficiency proof will be constructive from the criterion
itself.
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The desired non-negative real in (D.114) and (D.115) frequency has a (positive or zero) real

square root R
1/2
xx (eω) at each frequency, and this function in turn has a natural log

A(e−ω)
∆
= ln

[
R1/2
xx (e−ω)

]
. (D.124)

A(e−ω) itself is also periodic and real, and by the PWC integral equation, is absolutely
integrable and so has a corresponding Fourier representation

A(e−ω) =

∞∑
k=−∞

ak · e−ωk (D.125)

ak =
1

2π

∫ π

−π
A(e−ω) · eω · dω . (D.126)

Because this (Fourier Transform) A(e−ω) is purely real, then ak = a∗−k, and the D-Transform
simplifies to

A(D) = a0 +

∞∑
k=1

ak ·Dk +
−∞∑
l=−1

al ·Dl , (D.127)

and then by letting k = −l in the second sum,

A(D) = a0 +

∞∑
k=1

ak ·Dk +

∞∑
k=1

a−k ·Dk (D.128)

= a0 +

∞∑
k=1

[ak + a−k] ·Dk (D.129)

= a0 + 2 ·
∞∑
k=1

< [ak] ·Dk , (D.130)

which defines a causal sequence ak that corresponds to ln
[
R

1/2
xx (D)

]
. The sequence is causally

invertible because ln
[
R
−1/2
xx (D)

]
can be handled in the same way following (D.121). So,

Rxx(D) = eA(D) · eA
∗(D−∗) . (D.131)

Then, the desired canonical factorization has the factors

Sx,0 = e
1
2π

∫ π
−π ln[Rxx(e−ω)]·dω (D.132)

Gx(D) =
eA(D)√
Sx,0

. (D.133)

The corresponding continuous-time spectrum factorization then would be found withRxcxc(s) =

Rxx

(
1−s
1+s

)
and thus Ac(s) = A

(
1−s
1+s

)
. Then, with s→ ωc

Sxc,0 = e
1
2π

∫∞
−∞

ln[Rxcxc (ωc)]
1+ω2

c
·dωc

(D.134)

Gxc(s) =
eAc(s)√
Sxc,0

. (D.135)

If the original desired spectra were defined in continuous time, then it could be mapped into
discrete time through ωc → tan(ω2 ) and then proceeding with that discrete-time mapped
equivalent through the process above, ultimately leading to Equations (D.134) and (D.135).
Sufficiency has thus been established in both discrete- and continuous-time. QED.
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Minimum-phase functions and sequences have several interesting properties that can help understand
their utility. If a “phasor” diagram were drawn from each pole and zero to a point on the unit circle
(or imaginary axis for continuous time), the magnitude is the ratio of the zero-phasor-length products
to the pole-phasor-length products while the phase is the sum of the zero phases minus the sum of
the pole phases. For the minimum-phase D-Transform the phasor angle is measured from a horizontal
line to the left (while for the minimum-phase Laplace Transform it is measured from a horizontal line
to the right). These phase contributions are always the smallest with respect to the “other choice” of
the zero/pole from the maximum-phase factor. Whence the name “minimum phase.” Perhaps more
importantly, one can see as frequency increases the rate of change of the angle (the magnitude of delay)
is smallest for this same choice. Equivalently, each frequency for the particular magnitude spectrum
of interest is delayed the smallest possible amount. With respect to all other pole/zero choices, the
energy is maximally concentrated towards zero for any time period (among all waveforms with the same
spectrum). In Section ??, the DFE feedback section thus has largest ratio of first tap magnitude to
remaining taps’ summed magnitude, so thus smallest loss with respect to Chapter 3’s matched filter
bound. Such minimal-energy delay allows inversion of the function with the also-minimum-phase/delay
that is actually the negative of the first delay. In effect, this only occurs when the function is causal and
causally invertible.

D.3.4.1 Illustrative Concepts

A first illustration investigates the general realization’s simplification when the function to be factored
is already a ratio of finite polynomials. In this case, the following log power spectrum has a term like:∑

k

[
(1 + zkD) · (1 + z∗kD

−1)
]

(D.136)

for the numerator where zk are the zeros, divided into min-phase set for first term and max-phase
set for second term. There is a similar pole-term for the denominator. The example focuses on the
log-of-square-root term

ln(1 + zkD) = zkD −
(zkD)2

2
+

(zkD)3

3
− (zkD)4

4
+ .... , (D.137)

expanded via Taylor Series. The positive real A(e−ωT ) = ln |(1 + zke
−ω)| is periodic in ω and therefore

itself has a “Fourier Series” representation in terms of ω:

A(e−ωT ) =

∞∑
k=−∞

ak · e−ωk . (D.138)

Since A(e−ωT ) is real, then ak = a∗−k and thus

A(e−ωT ) = a0 + 2 ·
∞∑
k=1

<
{
ak) · e−ωk

}
. (D.139)

Then A(D) where e−ω → D is also minimum phase and clearly causal. Indeed then

R(D) = eA(D) · eA
∗(D−∗) = (1 + zkD) · (1 + z∗kD

−1). . (D.140)

Because (D.136)’s sum, this process can be continued for each term, resulting A(D) be sum of such
terms and thus eA(D) being the product of corresponding terms. Pole terms can be handled similarly
with a minus sign in front. Thus, the construction process leaves an

Rxx(D) =

L∏
k=−L

(1 + zkD)

(1 + pkD)
· (1 + z∗kD

−1)

(1 + p∗kD
−1)

. (D.141)

While the result could be produced by simple factoring, it illustrates the more general construction’s
thought processes. The more general procedure essentially corresponds to L → ∞ in the example.
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This prevents simple factorization in some cases, even with poles. Essentially, the extended process
corresponds to polynomials that cannot be factored, as the following illustrates.

The periodic function

R(e−ω)
∆
= 1− |ω|

π
∀|ω| ≤ π (D.142)

is clearly positive real. It also clearly satisfies PWC. It’s log-square-root function is also period and
equal to

A(e−ω) = ln

{√
1− |ω|

π

}
=

1

2
ln

(
1− |ω|

π

)
. (D.143)

This function has a Fourier Series representation

A(ω) =
∑
k

fk · e−ωk (D.144)

with f−k = f∗k , with

fk =
1

2π

∫ π

−π

1

2

(
1− |ω|

π

)
· e−ωk · dω , (D.145)

which simplifies to

fk≥0 =
1

2π

∫ π

0

(
1− |ω|

π

)
· cos(ωk) · dω . (D.146)

Matlab can be used to integrate numerically and find the coefficients (for k < 0, take conjugate).

>> F=zeros(1,11);

>> F(2) = (1/(2*pi))*integral(@(x) (log(1-abs(x)/pi).*cos(x)) ,0,pi);

>> F(3) = (1/(2*pi))*integral(@(x) (log(1-abs(x)/pi).*cos(2*x)) ,0,pi);

>> F(4) = (1/(2*pi))*integral(@(x) (log(1-abs(x)/pi).*cos(3*x)) ,0,pi);

>> F(5) = (1/(2*pi))*integral(@(x) (log(1-abs(x)/pi).*cos(4*x)) ,0,pi);

>> F(6) = (1/(2*pi))*integral(@(x) (log(1-abs(x)/pi).*cos(5*x)) ,0,pi);

>> F(7) = (1/(2*pi))*integral(@(x) (log(1-abs(x)/pi).*cos(6*x)) ,0,pi);

>> F(8) = (1/(2*pi))*integral(@(x) (log(1-abs(x)/pi).*cos(7*x)) ,0,pi);

>> F(9) = (1/(2*pi))*integral(@(x) (log(1-abs(x)/pi).*cos(8*x)) ,0,pi);

>> F(10) = (1/(2*pi))*integral(@(x) (log(1-abs(x)/pi).*cos(9*x)) ,0,pi);

>> F(11) = (1/(2*pi))*integral(@(x) (log(1-abs(x)/pi).*cos(10*x)) ,0,pi);

>> F(1) = (1/(2*pi))*integral(@(x) (log(1-abs(x)/pi)) ,-pi,pi) =

-1.0000 0.2947 -0.1129 0.0888 -0.0594 0.0520 -0.0403 0.0367

-0.0305 0.0284 -0.0245

So,

A(D) ≈ −1 + .2947D − .1129D2 + .0888D3 − .0594D4 + .052D5 −
.0403D6 + .0367D7 − .0305D8 + .0284D9 − .0245D10 .
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Figure D.1: Illustration of non pole-zero spectral factorization.

Figure ?? illustrates the positive-index coefficients for the first 10 values, which are clearly decreasing
in magnitude. It is not hard to show by induction that the magnitude of the coefficients is monotonically
decreasing, and of course since this function already satisfies PWC, it is absolutely convergent. The
canonical factor is therefore:

G(D) =
1√
S0

· e−1+.2947D−.1129D2+.0888D3−.0594D4+.052D5−.0403D6+.0367D7−.0305D8+.0284D9−.0245D10

.

(D.147)
Using ex =

∑∞
k=0

xn

n! in (D.147) will lead to all positive powers in D and a multi-term expression for
·
√
S0 ·G(D) that could be truncated in practice as the division by n! decreases the value of higher-order

terms.
√
S0 is this expansion’s constant term.

D.3.5 Linear Prediction

The inverse of Rxx(D) is also an autocorrelation function and can be factored when Rxx(D) also satisfies
the PW criterion with finite §x,0. In this case, as with the MMSE-DFE in Section ??, the inverse
autocorrelation factors as

R−1
xx (D) = S−1

x,0 · Ḡ(D) · Ḡ∗(D−∗) , (D.148)

where Ḡ(D) = G−1
x (D).

If A(D) is any causal and monic sequence, then 1− A(D) is a strictly causal sequence that may be
used as a prediction filter, and the prediction error sequence E(D) is given by

E(D) = X(D)−X(D) · [1−A(D)] = X(D) ·A(D) . (D.149)

The autocorrelation function of the prediction error sequence is

Ree(D) = Rxx(D) ·A(D) ·A∗(D−∗) =
A(D) ·A∗(D−∗)

S−1
x,0 · Ḡ(D) · Ḡ∗(D−∗)

, (D.150)
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so its average energy satisfies Ee = S0 ·‖(1/g)∗a‖2 ≥ S0 (since A(D)
Ḡ(D)

is monic), with equality if and only if

A(D) is chosen as the whitening filter A(D) = Ḡ(D). The process X(D)·Ḡ(D) = X(D)
Gx(D) is often called

the innovations of the process X(D), which has mean square value Sx,0 = 1/S0. Thus, Sx,0 of the direct
spectral factorization is the mean-square value of the innovations process or equivalent of the MMSE
in linear prediction. X(D) can be viewed as being generated by inputting a white innovations process
V (D) = Ḡ(D) ·X(D) with mean square value Sx,0 into a filter Gx(D) so that X(D) = Gx(D) · V (D).

The inverse’s factorization and Ḡ(D)’s resultant linear-prediction-fiilter interpretation helps develop
Section ??’s interesting MMSE-DFE interpretation where the MS-WMF output sequence D-Transform
replaces X(D).

D.3.6 Cholesky Factorization - Finite-Length Spectral Factorization

Cholesky Factorization is spectral factorization’s finite-length equivalent for an N -dmensional sym-
bol/packet. There are really two equivalent Cholesky Factorizations, both of which converge to the
infinite-length spectral factorization when the process is stationary with successive time-indexed dimen-
sions as N →∞.

D.3.6.1 Cholesky Form 1 - Forward Prediction

Cholesky factorization of a positive-definite (nonsingular)14 N × N matrix Rxx(N) produces a unique
upper triangular monic (ones along the diagonal) matrix Gx(N) and a unique diagonal positive-definite
diagonal matrix Sx(N) of Cholesky factors such that15

Rxx(N) = Gx(N) · Sx(N) ·G∗x(N) . (D.151)

The matrix Rxx(N) is often an autocorrelation matrix for N samples of some random vector process xk
with ordering

XN =

 xN−1

...
x0

 . (D.152)

A corresponding order of Gx(N)’s and Sx(N)’s elements is then

Gx(N) =


gN−1

gN−2
...
g0

 and Sx(N) =


sN−1 0 ... 0

0 sN−2 ... 0

0
...

. . . 0
0 0 ... s0

 . (D.153)

Since Gx(N) is monic, it is convenient to write

gi =
[
0∗N−1−i 1 g̃i

]
, (D.154)

where 0j in general is a column vector with j zeros in it, and g̃0 = ∅ or g0 = 1. The determinant of RN

is

Sx,0 = |Rxx(N)| =
N−1∏
n=0

sn . (D.155)

(or lnSx,0 = ln |Rxx(N)| in the limit as N → ∞). A convenient recursive description of Rxx(N)’s
components is, with rn = E

[
|xN |2

]
and rN−1 = E [Xnx

∗
N ]:

Rxx(N) =

[
rN r∗N−1

rN−1 Rxx(N − 1)

]
. (D.156)

14This is the equivalent of |ln |Rxx(N)|| < ∞ where |Rxx(N)| is the determinant of Rxx(N). Thus the determinant
cannot be infinite nor can it be zero, eliminating singularity. The determinant is the product of the eigenvalues of |Rxx|
so the ln transforms that product into a sum of the log eigenvalues - analogous to the integral in the PWC summing the
log transform values. The Fourier transform values are the eigenvalues at each frequency for infinite time extent.

15Dots are used in this subsection to help notation, even though they here may correspond to matrix multiplication - it
just makes it easier to read here.
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The submatrix Rxx(N − 1) also has a Cholesky Factorization

Rxx(N − 1) = Gx(N − 1) · Sx(N − 1) ·G∗x(N − 1) , (D.157)

which because of the 0 entries in the triangular and diagonal matrices shows the recursion inherent in
Cholesky decomposition; the Gx(N −1) matrix is the lower right (N −1)× (N −1) submatrix of Gx(N),
which is also upper triangular. Thus, the corresponding recursion description for Gx is

Gx(N) =

[
1 g̃N−1

0N−1 Gx(N − 1)

]
, (D.158)

so then[
rN r∗N−1

rN−1 Rxx(N − 1)

]
=

[
1 g̃N−1

0N−1 Gx(N − 1)

] [
sN−1 0

0 Sx(N − 1)

] [
1 0∗N−1

g̃∗N−1 G∗x(N − 1)

]
(D.159)

Equation (D.159) then admits by observation these recursions:

r∗N−1 = g̃N−1 · Sx(N − 1) ·G∗x(N − 1) (D.160)

or equivalently to compute g̃N−1 in terms of previously known quantities

g̃N−1 = r∗N−1 ·G−∗x (N − 1) · S−1
x (N − 1) , (D.161)

and
sN−1 = rN−1 − g̃N−1 · Sx(N − 1) · g̃∗N−1 . (D.162)

The inverse of Rxx(N) has a Cholesky factorization

R−1
xx (N) = G−∗x (N) · S−1

x (N) ·G−1
x (N) , (D.163)

where G−1
x (N) is also upper triangular and monic with ordering

G−1
x (N) =


ḡN−1

ḡN−2
...
ḡ0

 =

[
1 −g̃N−1 ·G−1

x (N − 1)
0 G−1

x (N − 1)

]
, (D.164)

where the use of g̃ from Gx(N)’s Cholesky Factorization follows easily through multiplication of Gx(N) ·
G−1
x (N) = I. Also, because it is monic,

ḡi =
[
0∗N−1−i 1 ˜̄gi

]
=
[
0∗N−1−i 1 − g̃N−1−i ·G−1

x (N − 1− i)
]

. (D.165)

D.3.6.1.1 Cholesky and finite-length linear prediction :

Cholesky factorization also derives from a linear-prediction interpretation. The innovations, V N , of
the N samples of XN are defined by

XN = Gx(N) · V N (D.166)

where E [V NV
∗
N ] = SN , and the individual innovations are independent (or uncorrelated if not Gaus-

sian), E
[
vi · v∗j

]
= Sx(i) · δij . Then

V N =

 vN−1

...
v0

 . (D.167)

Also,
V N = G−1

x (N) ·XN . (D.168)
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The cross-correlation between XN and V N is

Rvx = Sx(N) ·G∗x(N) , (D.169)

which is lower triangular. Thus,
E
[
vk · x∗k−i

]
= 0 ∀ i ≥ 1 . (D.170)

Since XN−1 = Gx(N−1) ·V N−1 shows a reversible mapping from V N−1 to XN−1, then (D.170) relates
that the sequence vk is a set of growing-order MMSE prediction errors for xk in terms of xk−1 ... x0

(i.e., (D.170) is the orthogonality principle for linear prediction). Thus,

vN = xN − r∗N−1 ·R−1
xx (N − 1) ·XN−1 (D.171)

since rN−1 is the cross-correlation between xN and X∗N−1 in (D.156). The top row of Equation ((D.166)
also says

xN = vN + r∗N−1 ·R−1
xx (N − 1) ·XN−1 (D.172)

using the top row of Equation (D.171) with argument N − 1 and also (D.153) (D.173)

= vN + r∗N−1 ·G−∗x (N − 1) · S−1
x (N − 1)︸ ︷︷ ︸

g̃N−1

·G−1
x (N − 1) · ·XN−1︸ ︷︷ ︸

V N−1

(D.174)

= gN−1 · V N , (D.175)

confirming that
gN−1 =

[
1 r∗N−1 · g̃∗N−1 · S−1

x (N − 1)
]

. (D.176)

Then, from (D.168), (D.171), and (D.174),

ḡN−1 =
[
1 − g̃N−1 ·Gx(N − 1)

]
. (D.177)

Finally, the mean-square error recursion is

sN = E
[
vN−1 · v∗N−1

]
(D.178)

= E
[
xN−1 · x∗N−1

]
− r∗N−1 ·R−1

xx (N − 1) · rN−1 (D.179)

= rN − g̃N−1 · Sx(N − 1) · g̃∗N−1 . (D.180)

D.3.6.1.2 Forward [Upper Triangular] Cholesky Algorithm:

For nonsingular RN :
Set g0 = Gx(1) = G−1

x (1) = ḡ0 = 1, Sx(1) = s0 = E|x0|2, and r∗i the last i upper row entries in
Rxx(i+ 1) as per (D.156).
For n = 2 ... N :

1. g̃n = r∗n−1 ·G−∗x (n− 1) · S−1
x (n− 1).

2. Gx(n) =

[
1 g̃n−1

0 Gx(n− 1)

]
.

3. G−1
x (n) =

[
1 −g̃n−1 ·G−1

x (n− 1)
0 G−1

x (n− 1)

]
.

4. Sx(n) = rn − g̃n−1 · Sx(n− 1) · g̃∗n−1 .
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A singular RN means that sn = 0 for at least one index n = i, which is equivalent to vi = 0. This
means that xi can be exactly predicted from the samples xi−1 ... x0 or equivalently can be exactly
constructed from vi−1 ... v0. Such a singular process has ln |RN | = 0 and would not as N → ∞ satisfy
the PWC. In the singular case, Cholesky factorization is not unique. Chapter 5 introduces a generalized
Cholesky factorization for singular situations that essentially corresponds to doing Cholesky factorization
for the nonsingular process, and then generating the deterministic parts that are singular and depend
entirely on the nonsingular parts from those nonsingular parts. This will be found equivalent there to
independent sampling of each remaining nonsingular processes.

D.3.6.2 Backward [Lower Triangular] Cholesky Algorithm

Backward Cholesky essentially corresponds to time-order reversal for the finite group of N samples (for
infinite-length sequences, this corresponds to Gx(D−∗)). Time reversal sets xN ← JNXN where JN
is the N × N matrix with ones on the anti-diagonal and zeros everywhere else. Backward prediction
is of x0 from xk=1,...,N−1. Further, J∗N = JN , and J2

N = I. For this time reversal, the autocorrelation
matrices follow

R̄xx(N)← JN ·Rxx(N) · JN (D.181)

So the operation in Equation (D.181) is the autocorrelation matrix corresponding to the time reversal
of xk’s components. This operation reversal basically “flips” the matrix about it’s antidiagonal16. For
a REAL Toeplitz matrix (stationary sequence), this flipping does not change the matrix; however for a
complex Toeplitz matrix, the new matrix is the conjugate of the original matrix. Further, the operation
JN · Gx(N) · JN converts Gx(N) from upper triangular to lower triangular, with the ones down the
diagonal (monic) retained. The operation

JN ·Rxx(N) · JN = [JN ·Gx(N) · JN ]︸ ︷︷ ︸
G̃∗x(N)

· [JN · Sx(N) · JN ]︸ ︷︷ ︸
S̃x(N)

· [JN ·G∗x(N) · JN ]︸ ︷︷ ︸
G̃x(N)

, (D.182)

which is the desired lower-diagonal-upper or “Backward-Cholesky” factorization. Thus, the backward
algorithm can start with the forward algorithm, and then just use the “tilded” quantities defined in
(D.182) as the backward Cholesky factorization (including G̃−1

x (N)→ JN ·G−1
x (N) · JN ).

D.3.6.3 Infinite-length convergence

Extension to infinite-length stationary sequences takes the limit as N →∞ in either forward or backward
Cholesky factorization. In this case, the matrix sequence Rxx(N) (and therefore Gx(N) and Sx(N))
must be nonsingular to satisify the Paley-Weiner Criterion. The equivalence to spectral factorization is
evident from both the finite-length and infinite length linear prediction discussions.

From a stationary perspective, forward and backward prediction are the same except that the back-
ward predictor reverses the time index (and conjugates when complex) of the forward predictor’s coef-
ficients (and vice versa). This is the equivalent (with re-index of time 0) of G∗x(D−∗) being the reverse
of Gx(D) with conjugate coefficients.

Thus, the inverse autocorrelation function factors as

R−1
xx (D) = S−1

x,0 ·G−1
x (D) ·G−∗x (D−∗) , (D.183)

where G−1
x (D) is the forward prediction polynomial (and its time reverse specified by G∗x(D−∗) is the

backward prediction polynomial). The series {Rxx,n}n=1:∞ formed from the coefficients of Rxx(D)
creates a series of linear predictors {Gx(N)}N=1:∞ with D-transforms Gx,N (D). In the limit as N →∞
for a stationary nonsingular series,

lim
N→∞

Gx,N (D) = Gx(D) . (D.184)

Similarly,
lim
N→∞

G∗x,N (D) = G∗x(D−∗) . (D.185)

16“Flip” is like transpose but around the anti-diagonal.
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As N →∞, the prediction-error variances SN−1, will tend to a constant, namely Sx,0. Finally, defining

the geometric-average determinants as Sx,0(N)
∆
= |Rxx|1/N and S−1

x,0(N) = |R−1
xx |1/N

lim
N→∞

Sx,0(N) = Sx,0 = e{
1
2π

∫ π
−π ln(Rxx(e−ω))dω} (D.186)

lim
N→∞

§−1
x,0(N) = S−1

x,0 = e−{
1
2π

∫ π
−π ln(Rxx(e−ω))dω} . (D.187)

The convergence to these limits implies that the series of filters converges or that the bottom row (last
column) of the Cholesky factors tends to a constant repeated row/column. Chapter 5 has examples of
this effect.

Interestingly, Chapter 5’s Generalized Cholesky Factorization of a singular process exists only for fi-
nite lengths. Using the modifications to this appendix section’s Cholesky Factorization with “resampling”
in each disjoint PWC-satisfying frequency band, it becomes obvious why such the original combined ran-
dom process cannot converge to a constant limit. So only nonsingular processes have (infinite-length)
spectral factorization. A singular process’ infinite-length factorization first separates that process into a
sum of subprocesses, each of which is resampled at a new sampling rate that satisfies the PWC over each
of the frequency bands associated with these processes. This is equivalent to the multiple Cholesky’s for
each of the process’ nonsingular components at infinite length. For more, see Chapter 5.
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D.4 MIMO Spectral Factorization

D.4.0.1 Vector Transforms

The D-Transform’s extension to an L-dimensional vector sequence xk is

X(D) =

∞∑
k=∞

xk ·Dk , (D.188)

for all scalar complex D in the convergence region, D ∈ Dx. The inverse D-Transform is given by
xk = 1

2π

∮
D∈Dx

X(D) ·D1−k · dD.17 When the unit circle is in the convergence region |D| = 1 ∈ Dx,
then a vector Fourier Transform exists and is

X(e−ω) =

∞∑
k=∞

xk · e−ωk . (D.189)

Sufficient conditions for convergence of the Fourier Transform generalize to:

‖x‖1 =

∞∑
k=∞

|xk|1 <∞ , (D.190)

or

‖x‖2 =

∞∑
k=∞

‖xk‖2 <∞ . (D.191)

Vector D-Transforms with poles on the unit circle are handled in the same limiting sense of approaching
the unit circle arbitrarily closely from outside, which essentially allows generalized functions to be used
in the frequency domain. The vector sequence’s Fourier Transform then also exists. The transform’s
similarity to its inverse then allows equivalently that the inverse Fourier Transform:

1

2π

∫ π

−π

∣∣X(e−ω))
∣∣ · dω <∞ , (D.192)

or if
1

2π

∫ π

−π
‖X(e−ω))‖2 · dω <∞ . (D.193)

Rather, than repeat all for a continuous-time vector function’s Laplace Transform, the Vector Laplace
Transform for continuous-time vector process x(t) is

X(s) =

∫ ∞
−∞

x(t) · e−stdt , (D.194)

with convergence region s ∈ Sx. When the imaginary axis is in the convergence region Sx, the Fourier
Transform is

X(ω) =

∫ ∞
−∞

x(t) · e−ωtdt . (D.195)

Convergence conditions on the vector continuous-time process are then∫ ∞
−∞
|x(t)| · dt < ∞ , or equivalently (D.196)

1

2π

∫ ∞
−∞
|X(ω)| · dω < ∞ , (D.197)

17There is not a separate D value for each dimension of the vector xk - just one scalar D value for all vector elements.
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This means that the vector function x(t) belongs to the space of continuous functions L1. Another
sufficient condition is that vector function x(t) belongs to L2 or has finite energy according to∫ ∞

−∞
‖x(t)‖2 · dt < ∞ , or equivalently (D.198)

1

2π

∫ ∞
−∞
‖X(ω)‖2 · dω < ∞ . (D.199)

Similarly “generalized” functions complete the capability to handle continuous Fourier Transforms that
are “on the stability margin” where values of s in a region of convergence arbitrarily close to the ω axis
(left of, but not on this axis). These will converge so the criteria are considered satisfied in a limiting or
generalized sense.

Similarly a matrix time series can also have a matrix D-Transform (Laplace Transform) that contains
the D-Transform (Laplace Transform) of each and every time-series element. There is only one common
D variable for all these matrix elements. The convergence region is the intersection of the elements’
convergence regions. When that overall convergence region includes the unit circle (complex axis), the
Fourier Transform also exists and the inversion formula are all the obvious extensions. For square
matrices, Fourier-Transform sufficiency criteria simplifies to

∞∑
k=−∞

|Rk| <∞ (D.200)

where the summed entities are the matrix-time-series coefficients’ determinants, so equivalently Defini-
tion D.2.3’s summed individual matrix norms. Basically the sum of the matrix-time-series coefficients’
norms for transforms (or integral for Laplace) has to be finite as a sufficient condition for any valid
norm’s existence. So in this case the chosen norm is the trace, but that is equivalent to summing deter-
minants in terms of existence. As Definition D.2.3, the square norm has essentially two equivalent forms
for MMSE estimation.

The bilinear transform is unchanged with respect to scalar processes.

D.4.1 Autocorrelation and Power Spectra for vector sequences

This subsection generalizes scalar D-Transforms factorization to autocorrelation functions and associated
power spectra for stationary and wide-sense stationary vector processes.

Definition D.4.1 [Autocorrelation and Power Spectrum for Vector Sequences] If xk
is any stationary complex vector sequence, its autocorrelation matrix is rxx,j =
E[xkx

∗
k−j ] with D-Transform Rxx(D); symbolically18

Rxx(D)
∆
= E

[
X(D) ·X∗(D−∗)

]
. (D.201)

By stationarity, rxx,j = r∗xx,−j and Rxx(D) = R∗xx(D−∗). The power spectrum
matrix of a stationary vector sequence is the Fourier transform of its autocorrelation
matrix function, which is

Rxx(e−ω) = Rxx(D)|D=e−ω , −π < ω ≤ π , (D.202)

which is positive semi-definite19 for all ω, namely

x∗ ·R(e−ω) · x ≥ 0 , ∀ x ∈ C Lx and ∀ ω ∈ (−π, π) . (D.203)

Consequently the determinant and the norm are both non-negative:∣∣Rxx(e−ω)
∣∣ ≥ 0 , ∀ ω ∈ (−π, π) (D.204)

trace{Rxx} ≥ 0 , ∀ ω ∈ (−π, π) . (D.205)
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Conversely, any positive semi-definite function Rxx(e−ω) that is real and nonnega-
tive definite over the interval {−π < ω ≤ π} is a power-spectrum matrix and has
corresponding matrix autocorrelation function Rxx(D) = R∗xx(D−∗), or equivalently
rxx,k = r∗xx,−k.

The quantity E
[
|xk|2

]
is Ex, and can be determined from either the autocorrelation matrix or the

power spectrum matrix as follows:

Ex = E
[
|xk|2

]
(D.206)

= trace {rxx,0} (D.207)

=
1

2π
trace

{∫ π

−π
Rxx(e−ω)dω

}
. (D.208)

If a matrix sequence Rk in question is deterministic such as might be formed by inverse Fourier
Transform of the filter R(e−ω) = H(e−ω) ·H∗(eω), then the averages are not necessary above. The
power spectra matrix is then the positive semi-definite matrix R(e−ω) for discrete time. These Fourier
Transforms’ magnitudes can be thought of also as power spectra matrices, and the corresponding inverse
transforms as autocorrelation functions in this text.

Definition D.4.2 [Continuous-Time Vector Autocorrelation & Power Spectra] If x(t)
is any stationary complex vector function, its autocorrelation matrix is rxcxc(t) =
E[xc(u) · x∗c(u− t)] with Laplace Transform Rxcxc(s); symbolically20

Rxcxc(s)
∆
= E [X(s) ·X∗(−s∗)] . (D.209)

By stationarity, rxcxc(t) = r∗xcxc(−t) and Rxcxc(s) = R∗xcxc(−s
∗). The power spec-

trum matrix of a stationary continuous-time vector process is the Fourier transform of
its autocorrelation matrix function, which is

Rxcxc(ωc) = Rxcxc(s)|s=ωc , −∞ < ωc ≤ ∞ , (D.210)

and which is real and nonnegative definite for all ωc, namely

|Rxcxc(ωc)| ≥ 0 −∞ < ωc <∞ . (D.211)

Conversely, any function R(ωc) that is real and nonnegative definite over the interval
{−∞ < ωc ≤ ∞} is a power-spectrum matrix and has autocorrelation matrix function
satisfying R(s) = R∗(−s∗).

The quantity E
[
|xc(t)|2

]
is the power Px and can be determined from either the autocorrelation

function or the power spectrum as follows:

Px = E
[
|xc(t)|2

]
= trace {rxcxc(0)} =

1

2π
trace

{∫ ∞
−∞

Rxcxc(ωc) · dωc
}

. (D.212)

If a matrix function r(t) in question is deterministic such as might be formed by inverse Fourier
Transform of the filter R(ω) = H(ω) · H∗(ω), then the averages are not necessary above. The
power spectra matrix is then the positive semi-definite matrix R(ω) for continuous time. These Fourier
Transforms’ magnitudes can be thought of also as power spectra matrices, and the corresponding inverse
transforms as autocorrelation functions in this text.
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D.4.2 Factorizability for MIMO Processes

Vector sequences have two types of dimensions, discrete (or continuous) time with infinite index span
k ∈ Z (or t ∈ R) and space with finite index l = 1, ..., L. The infinite time index corresponds to a
continuous transform variable D for discrete time and s for continuous time, while the finite space index
leads to Subsection D.2’s vector and matrix generalizations. Sometimes this text will group time-domain
samples into finite symbols with k ∈ [0, ..., N − 1] and the corresponding infinite transforms (D and s)
sampled (on the unit circle or imaginary axis respectively) also to a discrete frequency index n. In this
case, the matrix indexing, k or n, corresponds to a SISO system, and L = 1. Chapter 3 uses discretization
in Section ??’s FIR Equalizers to compute all equalizers (linear or decision-feedback). Chapters 4 and 5
show how each sampled frequency may be viewed in MIMO as a separate MIMO system, so there will
be two levels of matrix application: (1) time-frequency and (2) space. Those designs are finite-length
implementable subsets of the infinite-length (time-frequency) MIMO processes appearing in Section ??.

Matrix “factorization” has some definition flexibility; this text will combine Cholesky Factorization
and infinite-length factorization to create a MIMO factorization theory that this text uses, particularly
Section ??. One contributor to non-unique factorization is the order of the spatial dimensions. Each
order produces a different factorization, but they all clearly from a high-level intuitive perspective must
be the same. The spatial indexing is arbitrary from that view point. However, this order leads to different
MMSE’s on each of the spatial dimensions, which favors certain dimensions. Such favored dimensions
will have application in Chapter 5’s multi-user MMSE theory.

At time of writing, the author is aware of no treatment anywhere that approaches this appendix,
including the classic text by [1], which calls this area intractable. However, the short paper by [2] was
helpful in developing the methods of this subsection, which the author hopes readers find useful for the
general MIMO theory of equalization and MMSE in general.

The spectral factorization of a discrete-time vector autocorrelation function’s D-Transform is:

Definition D.4.3 [Factorizability for Vector Sequences] An autocorrelation function
Rxx(D), or equivalently any positive semi-definite real function Rxx(e−ω) at all
ω ∈ (−π, π) and corresponding inverse transform rxx,k = r∗xx,−k, will be called factor-
izable if it can be written in the form

Rxx(D) = Gx(D) · Sx,0 ·G∗x(D−∗), (D.213)

where Sx,0 is a constant postive-real diagonal matrix and where Gx(D) is a canonical
matrix filter response. The canonical matrix-filter factor Gx(D) for a factorizable
Rxx(D) must also be causal Gx(D) =

∑∞
k=0 or Gx,k = 0 ∀ k < 0, have upper

triangular Gx(0) that is also monic Diag {Gx(0)} = I, and minimum phase (all of its
poles and zeros are outside or on the unit circle). If Gx(D) is canonical, then G∗x(D−∗) is
anticanonical; i.e., anticausal, monic lower triangular Gxvec(∞), and maximum-phase
(all poles and zeros inside or on the unit circle).

The convergence region for a factorizable Rxx(D) clearly includes the unit circle, as do the re-
gions for both Gx(D) and G∗x(D−∗). If canonical Gx(D) = G0, a constant, then |Gx(D)| = 1 and
trace{Gx(D)} = Lx, which are clearly their minimum norm values for the more general canonical
Gx(D) because positive semi-definite terms Gx,k>0 ·G∗x,−k<0 would only contribute non-negative value

to their norm. The inverse G−1
x (D) is also clearly canonical and thus can be realized. This inverse also

factorizes similarly into
R−1
xx(D) = G−1

x (D) · S−1
x,0 ·G

−∗
x (D−∗) . (D.214)

The determinant |Rxx(D)| will capture any and all the factorization’s poles and zeros21. If |Rxx(D)|
is a ratio of finite-degree polynomials in D, then Rxx(D) is factorizable, which becomes evident as this

21Hidden cancellations will not be important in practice; In the non-polynomial-ratio case, the number of zeros may be
infinite.
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section progresses with a procedure to find the canonical factors. This procedure generalizes “group
poles/zeros together for inside and outside of the circle - any poles/zeros on the unit circle will also
appear in conjugate pairs and so are easily separated,” as in Subsection D.4. Handling of autocorrelation
matrices whose determinant is not already such a finite-degree polynomial ratio appears in the Subsection
?? through the MIMO Paley-Wiener Criterion.

Also, if Rxx(D) is factorizable, then the corresponding Rxcxc(s) = Rxx

(
1−s
1+s

)
is also factorizable

into
Rxcxc(s) = Gxc(s) · Sxc ·G∗xc(−s

∗) . (D.215)

Definition D.4.4 [Factorizability for Continuous Vector Functions] An autocorrelation
matrix Rxcxc(s), or equivalently any positive semi-definite Rxcxc(ω) at all ω ∈ (−∞,∞)
and corresponding inverse transform rxcxc(t) = r∗xcxc(−t), will be called factorizable
if it can be written in the form

Rxcxc(s) = Gxc(s) · Sxc,0 ·G∗xc(−s
∗), (D.216)

where Sxc,0 is a finite positive real diagonal matrix and Gxc(s) is a canonical filter
response. The canonical matrix-filter response Gxc(s) for a factorizable Rxcxc(s) must
also be causal (gxc(t) = 0 for t < 0), have monic upper triangular Gxc(s = 0) so that
( Diag {Gxc(0)} = I ), and minimum-phase (all of its poles and zeros are in the left
half plane). If Gxc(s) is canonical, then G∗xc(−s

∗) is anticanonical; i.e., anticausal,
monic, lower triangular Gxc(0), and maximum-phase (all poles and zeros inside in the
right half plane). Further, (note use of bold and plain fonts on “x”)

Sx,0
∆
= |Sx,0| . (D.217)

The region of convergence for factorizable Rxcxc(s) clearly includes the ωc axis, as do the regions
for both Gxc(s) and G∗xc(−s

∗).

If Gxc(s) is a canonical response, then ‖gxc‖2
∆
= trace

{∫∞
−∞ |gxc(t)|

2
}
≥ Lx, with equality if

Gxc(s) = I, since Gxc(s) is monic. Further, the inverse also factorizes similarly into

R−1
xcxc(s) = G−1

xc(s) · S
−1
xc,0 ·G

−∗
xc(−s

∗) . (D.218)

The determinant of |Rxx(s)| will capture all poles and zeros in any and all terms of the factorization
(and hidden cancellations will not be important in practice).

D.4.3 Finite-Degree MIMO polynomial factorization

Any matrix autocorrelation function that is a ratio of finite-degree polynomials in all entries is factoriz-
able. This subsection provides a direct calculation of the factors by expanding on a method suggested
by [2]. The square autocorrelation matrix of polynomials is

Rxx(D) =

 Rxx,Lx,Lx(D) ... Rxx,Lx,1(D)
...

. . .
...

Rxx,1,Lx(D) ... Rxx,1,1(D)

 (D.219)

Each element of Rxx(D), here simplified to R(D) has the form

Ri,j(D) =
Ki,j ·

(∏Qz
q=1(1− zqD)

)
·
(∏Qz

q=1(1− zqD−1)
)

Zi,j ·
(∏Mp

m=1(1− pmD)
)
·
(∏Mp

m=1(1− pmD−1)
) . , (D.220)
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with zq, q = 1, ...,Qz with |zq| < 1 are the max-phase zeros inside the unit circle and 1/zq are the
minimum-phase zeros outside the unit circle. Complex zeros occur in conjugate pairs. Zeros on the
unit circle will also occur in pairs, where one in each unit-magnitude pair is minimum phase and the
other is maximum phase. The poles pm,m = 1, ...,Mp with |pm| < 1 are the max-phase poles inside
the unit circle, and 1/pm are the minimum-phase poles outside the unit circle. Complex poles occur
in conjugate pairs. Poles on the unit circle will also occur in pairs, where one in each unit-magnitude
pair is minimum phase and the other is maximum phase. Qz < ∞ is the maximum degree of the min-
(or max-) phase numerator component, while Mp < ∞ is the maximum degree of the min- (or max-)
phase denominator component. These maximums can be taken over all elements in the matrix and
simple zi = 0 or pi = 0 terms used for those terms of lower degree where the pole zero terms drop. The
constant Ki,j will be the ratio of the highest-degree non-zero coefficient in Ri,j(D)’s numerator to the
corresponding highest-degree non-zero coefficient in its denominator.

Prescripts will be used to denote generations of quantities within the algorithm that follows, as will
become evident.

D.4.3.1 STEP ZERO - INITIALIZATION

A initial step computes the least common multiple of all Ri,j(D) elements’ pole factors ∆(D) ·∆∗(D−∗),
and saves them, replacing R(D) then with this new polynomial of finite maximum degree 2Qz. The
pole factors return in a final step because they easily separate into minimum and maximum phase and
then will multiply the algorithm’s corresponding G(D) output factors that arise. The factorization then
proceeds of the remaining all-zero polynomial R(D).

0R(D) = ∆(D) ·R(D) ·∆(D) . (D.221)

D.4.3.2 STEP ONE - Polynomial Cholesky Factorization

Cholesky Factorization applies also to transform polynomials even though presented earlier for constant
matrices. The Cholesky factorization of a symmetric positive definite (semi-definite in case of polynomials
at any zeros) matrix R(D) for the 2× 2 case is:

R(D) =

[
a(D) b∗(D−∗)
0 g(D)

]
·
[
a∗(D−∗) 0
b(D) g∗(D−∗)

]
(D.222)

=

[
a(D) · a∗(D−∗) + b∗(D−∗) · b(D) b∗(D−∗) · g∗(D−∗)
g(D)c · b(D) g(D) · g∗(D−∗)

]
, (D.223)

In the 2×2 case for 0R(D), Cholesky factors are easily determined by factoring the lower right-side term
(half the 11 term) in 0R(D)

g(D) =
√
K1,1 ·

Qz∏
q=1

(1− zq11 ·D). , (D.224)

and then

b(D) =
0R1,2(D)

g(D)
(D.225)

and finally

a(D) =
√

0R2,2(D)− b∗(D−∗) · b(D) . (D.226)

The square root in (D.226) is chosen through this all-zero polynomial’s factorization terms (1 − z ·D)
with |z| ≤ 1 and their complimentary terms (1− z ·D−1). The algorithm retains the former, along with
the square root of a highest-degree-D coefficient. Equation (D.226)’s a(D) then is the minimum-phase
square root.

Once the above 2 × 2 recursion’s steps are understood, progress to the L × L general version for
R(D) follows as the STEP ONE recursion that takes advantage of the G(D) “upper triangular matrix”
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growing in size at each iteration:

Rl(D) =

[
rl,l(D) r∗l (D

−∗)
rl(D) Rl−1(D)

]
(D.227)

=

[
al(D) b∗l (D

−∗)
0 Gl−1(D)

]
·
[
a∗l (D

−∗) 0
bl(D) G∗l−1(D−∗)

]
(D.228)

=

[
al(D) · a∗l (D−∗) + b∗l (D

−∗) · bl(D) b∗l (D
−∗) ·G∗l−1(D−∗)

Gl−1(D) · bl(D) Gl−1(D) ·G∗l−1(D−∗)

]
, (D.229)

with iteration l solution for l = 2, ..., L as22

b(D) = G−1
l−1 · rl(D) , (D.230)

then minimum-phase square root for a(D) as

a(D) =
√
rl,l(D)− b∗l (D−∗) · bl(D) , (D.231)

and finally G(D) is then given in (D.229). When l = L, a valid square-root, but not necessarily minimum
phase, has been found for the original matrix R(D). The remaining steps then drive to a canonical factor
from this square root. Thus,

1G(D) · 1G∗(D−∗) = 0R(D) . (D.232)

D.4.3.3 STEP TWO: Left Extraction of Poles

Cholesky factorization will leave the upper left entry of G(D) as the ratio of the determinants |RL(D)| to
|RL−1(D)|, and similarly for l = L−1, ..., 2. Because of the minimum-phase square root choices made in
STEP ONE, the denominators of these determinants will have poles outside the unit circle. The factor

1G(D) thus may now have poles that will be stable (outside or on the unit circle), which STEP TWO
extracts to the left through a diagonal-matrix multiple removal so that

2G(D) =


1∏Mp

m=1(1−pm,l,lD)
0 ... 0

0 1∏Mp
m=1(1−pm,l−1,l−1D)

... 0

...
...

. . .
...

0 ... 0 1

 · 1Gl(D) (D.233)

Poles at infinity, pm,j,j = 0 are simply the factor 1/D that can be ignored without altering the square root
(because an D factor on the right side for G∗(D−∗) eventually cancels them or equivalently and advance
of a stationary sequence does not change its autocorrelation). Pole extraction is not necessary but
simplifies the remaining steps. These poles will necessarily cancel with zeros in the final G(D) because
the determinant is 0R(D) an all-zero polynomial. That determinant is maintained in the product of the
square root with its paraunitary factor 0R

1/2 · 0R∗/2(D−∗) = 0R(D).

D.4.3.4 STEP THREE: Compute and factor the determinant of G

The current square root 2G(D) may have zeros inside the unit circle and is thus not yet minimum phase.
These zeros are found by computing the determinant |2G(D)| and factoring this scalar polynomial:

|2G(D)| = kg2 ·

(Qz∏
q=1

(1− zq2 ·D)

)
, (D.234)

where zq2 are the zeros and kg2 is a constant equal to the coefficient of lowest power of D (typically D0

at this point) in the original determinant. The zeros inside the unit circle where |zq2| > 1 will need to
be removed in the next step, and STEP THREE identifies them.

22The inverse G−1
l−1(D) is determined easily by adding a new row at the top of the value for G−1

l−1(D), and there is
essentially only 1 polynomial divide operation per iteration step.
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D.4.3.5 STEP FOUR: Remove the maximum-phase zeros from G(D)

Any determinant zero causes 2G(D) = 0 and thus means that its columns are linearly dependent at
this value of D = zq2. There consequently exists a unitary constant transformation U3 (with U3U

∗
3 =

I = U∗3U3) for each such zero that rotates 3G(D) = 2G(D) · U3 to zero any selected column. Such a
zeroed column has a common zero factor at zq2 for all elements. Such a transform preserves 3G(D) as a
square root. Usually finding U3 is trivial (as a later example shows), but generally it is found from the
constant matrix 2G(zq2’s null space (which is of dimension at least one because this matrix is singular)
and placing a normalized null-space basis vector in the last column of U3 so that the last column of the
product 2G(zq2) ·U3 is zero, which also means that column has a common zero at zq2 in all its elements.

STEP FOUR extracts this common zero to the right through the multiplication

4G(D) = 2G(D) · U3︸ ︷︷ ︸
3G(D)

·

 1 0 0
0 1 0

0 0
1−1/zq2·D

D·(1−1/zq2D−1)


︸ ︷︷ ︸

Ũ3(D)

(D.235)

The matrix Ũ3(D) is paraunitary and will cancel with is opposite phase equivalent in the parallel for-
mation of 4G

∗(D−∗). The zero will be cancelled and replaced by a minimum phase zero at 1/zq2. This
fourth step repeats until there are no maximum-phase zeros remaining in 4G(D). 4G(D) is clearly a
valid minimum-phase square root.

D.4.3.6 STEP FIVE - remove constants to the center

The term 4G(0) is not necessarily upper triangular, nor monic. STEP FIVE continues with matrix
scaling so that 5G(0) = I and thus

5G(D) = 4G(D) · 4G−1(0) . (D.236)

Then

1R(D) = 5G(D) · 5R︸︷︷︸
4G(0)·4G∗(0)

5G
∗(D−∗) (D.237)

The middle matrix is not yet diagonal, but 5G(0) is now monic.

D.4.3.7 STEP SIX - Constant-Matrix Cholesky Factorization and adjustment

STEP SIX factors the constant middle matrix through normal Cholesky Factorization as

5R = 6G(0) · S · 6G∗(0) (D.238)

and so now

6G(D)
∆
= 5G(D) · 6G(0) . (D.239)

6G(D) is a valid square root and canonical for 1R(D).

D.4.3.8 STEP SEVEN - Restore the original poles

Step 0 removed poles from R(D), and this STEP SEVEN now restores them.

G(D) =
1

∆(D)
· 6G(D) , (D.240)

and finally the desired canonical factorization is

R(D) = G(D) · S ·G∗(D−∗) (D.241)
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D.4.3.9 Swenson’s Example

Dr. Norm Swenson, a former student and as a visiting Scholar in 2020, suggested the following L = 2
MIMO channel for factorization. He encountered it in an optical mixed-mode situation and challenged
the author to factor:

The matrix to be factored is:

R(D) =

[
8D−1 + 23 + 8D 7D−1 + 7−D
−D−1 + 7 +D −6D−1 + 18− 6D

]
(D.242)

The following matrix commands for the matrix and find its roots, determinant, and STEP ONE
Cholesky Factor (there are no poles):

>> R11=[-6 18 -6];

>> R22=[8 23 8];

>> R12=[-1 7 7 ];

>> R21=[7 7 -1];

>> roots(R11)

ans = 2.6180

0.3820

>> z11 = 0.3820;

>> sr11 = sqrt(R11(1)/-z11) = 3.9634

>> roots(R22)

ans = -2.4702

-0.4048

>> z22 = -0.4048

>> sr22=sqrt(R22(1)/-z22) = 4.4454

>> detR=conv(R22,R11)-conv(R21,R12)

detR = -41 -36 219 -36 -41

>> roots(detR)

-2.8306

1.7267

0.5791

-0.3533

>> z1= -0.3533

>> z2 = 0.5791

>> sdetR=sqrt(detR(1)/(-z1*-z2)) = 14.1559

>> GA22=sdetR*conv([1 -z1],[1 -z2]) = 14.1559 -3.1973 -2.8963

>> GA11=sr11*[-z11 1] = -1.5139 3.9634

>> GA21 = [ 7 7 -1 ];

GA12 =[ 0 0 ];

So the original matrix can also be written with factorization of its diagonal components as:

R(D) =

[
4.452 · (1 + .405D)(1 + .405D−1) 7D−1 + 7−D

−D−1 + 7 +D 3.962 · (1− .382D)(1− .382D−1)

]
(D.243)

and

|R(D)| = −41D−2−36D−1+219−36D−41D2 = 14.162·(1−.579D)·(1+.353D)(1+.353D−1)·(1.579D−1) .
(D.244)

The matlab code uses the label GA, GB, etc. instead of prescripts.
So far then, the factoring has produced (since the Cholesky Factor 22 entry is the ratio of the overall

square-root determinant to the corresponding square root of 11 entry), extracting the common top-row’s
1/(3.96(1− .382D)) divide-by-g pole term to the left.

GA(D) =

[ 1
3.96(1−.382D) 0

0 1

]
·
[

14.15(1 + .353D)(1− .579D) 7 + 7D −D2

0 3.96(−.382 +D)

] [
1 0
0 D−1

]
(D.245)
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STEP THREE and STEP FOUR identify the zero at .382 and remove it from last column.

>> GA22atz11 = GA22(1)+ GA22(2)*z11 + GA22(3)*z11*z11 = 12.5120

>> GA21atz11 = GA21(1)+ GA21(2)*z11 + GA21(3)*z11*z11 = 9.5279

>> GA12atz11=GA12(1) + GA12(2)*z11 = 0

>> GA11atz11=GA11(1) + GA11(2)*z11 = 0

GA(0.382) =

[
12.512 9.5279

0 0

]
. , (D.246)

which makes it obvious that the unitary matrix to zero is a simple two-dimensional rotation with a
cosine and sine computed as:

>> normuA=sqrt(GA22atz11^2+GA21atz11^2) = 15.7268

>> cA=GA22atz11/normuA = 0.7956

>> sA=GA21atz11/normuA = 0.6058

>> GA21tilde=GA22*(-sA)+GA21*cA = -3.0070 7.5062 0.9591

>> roots(GA21tilde) =

2.6180

-0.1218

>> GA22tilde=GA22*cA+GA21*sA = 15.5031 1.6971 -2.9101

>> GA12tilde=GA12*cA+GA11*sA = -0.9172 2.4011

>> GA11tilde=GA12*-sA+GA11*cA = -1.2044 3.1532

>> roots(GA11tilde) = >> roots([ -1.2044 3.1532]) = 2.6181

checks both 11 term and 21 term in last column now have the max-phase zero at 1/2.618, which can now be factored out.

>> detGAtilde = conv(GA22tilde,GA11tilde)-conv(GA21tilde,GA12tilde) = -21.4301 60.9450 -8.2873 -11.4792

>> roots(detGAtilde) =

2.6180 ( corresponds to zero inside unit circle)

0.5791

-0.3533

(checks because 1/2.618 = .382, so the zero at .382 can be extracted by RHS multiply)

>> roots(GA21tilde) =

2.6180

-0.1218

>> X1 = 2.6180

>> X2 = -0.1218

>> GA21tilde(1)*conv([1 -X1],[1 -X2]) = -3.0070 7.5062 0.9591 (checks!)

So, after rotation on the right, the new focal point (middle matrix ignoring poles on left) is

G̃A(D) =

[
15.5031 + 1.6971D − 2.9101D2 −3.0070 + 7.5062D + .9591D2

−0.9172 + 2.4011D −1.2044 + 3.1532D

]
(D.247)

>> GB21=GA21tilde(1)*-X1*[1 -X2] = 7.8725 0.9591

>> GB22=GA22tilde = 15.5031 1.6971 -2.9101

>> GB12=GA12tilde = -0.9172 2.4011

>> GB11=GA11tilde(1)*-X1 = 3.1532

>> roots(GB22) =

-0.4914

0.3820

>> zB22 = -0.4914

>> zB21 = -0.1218

To do a check, see the 1,1 term

We left the [1 -z11] zero in the RHS factor (but used its pole to cancel zeros

in last column of GAtilde in forming GB)

To check, we need to put it back in.

>> GB11ch=conv(GB11, [1 -z11]) = 3.1532 -1.2044
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>> rch =conv(GB12(1:2),GB12(2:-1:1))+conv(GB11ch,GB11ch(2:-1:1)) =

-6.0000 18.0000 -6.0000. (looks good, at least on this term so far)

------------------

>> detGB=conv(GB22,GB11)-conv(GB21,GB12) = 66.2215 -37.9255 -14.7060

>> roots(detGB) =

0.8378

-0.2651

>> X1B = 0.8378

>> X2B = -0.2651

we’re done already because roots are all min phase.

-------------------------------------------------------

another check

>> rch22 = (1/(-z11*sr110*sr110))*(conv(GB22(1:3),GB22(3:-1:1))+conv(GB21ch,GB21ch(3:-1:1))) =

8.0000 -1.0000 -53.0000 -1.0000 8.0000

>> roots(rch22) =

2.6180

-2.4702

-0.4048

0.3820

>> rch22(1)*conv([1 -ans(2)],[1 -ans(3)]) =

8.0000 23.0000 8.0000

checks.

------------------------------------------

The matrix of interest is now

GB(D) = G̃A(D) ·
[

1 0
0 1−.382D

D(1−.382D−1)

]
(D.248)

=

[
15.5031 + 1.6971D − 2.9101D2 7.8725 + .9591D

−0.9172 + 2.4011D 3.1532

]
(D.249)

with determinant
|GB(D)| = 66.2215 · (1 + .2651D) · (1− .8378D) , (D.250)

which has all roots outside unit circle. Matlab commands above checked the 22 term also. Continuing
by reabsorbing the pole on the left:

>> GC22=(GB22(1)/sr110)*[1 -zB22] = 3.9116 1.9223

>> GC11=GB11*[1 -z11] = 3.1532 -1.2044

>> GC12=GB1 = -0.9172 2.4011

>> GC21=(GB21(1)/sr110)*[1 -zB21] = 1.9863 0.2420

>> conv(GC22,GC22(2:-1:1))+conv(GC21,GC21(2:-1:1)) =. 8.0000 23.0000 8.0000

>> conv(GC12,GC22(2:-1:1))+conv(GC11,GC21(2:-1:1)) = -1.0000 7.0000 7.0000

>> conv(GC22,GC12(2:-1:1))+conv(GC21,GC11(2:-1:1)) = 7.0000 7.0000 -1.0000

>> conv(GC12,GC12(2:-1:1))+conv(GC11,GC11(2:-1:1)) = -6.0000 18.0000 -6.0000

Checks.

Now the conversion to monic in STEPS FIVE and SIX:

>> GC0=[GC22(1) GC21(1)

GC12(1) GC11(1)] =

3.9116 1.9863
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-0.9172 3.1532

>> GC0*GC0’ =

19.2462 2.6757

2.6757 10.7839

>> J = [ 0 1

1 0 ];

>> R=J*chol(J*GC0*GC0’*J)*J =

4.3107 0

0.8148 3.2839

>> R=R’

4.3107 0.8148

0 3.2839

>> R*R’ = 19.2462 2.6757

2.6757 10.7839. checks.

>> S=diag(diag(R))*diag(diag(R)). =

18.5823 0

0 10.7839

>> G=R*inv(diag(diag(R))) =

1.0000 0.1890

0 1.0000

>> G*S*G’ =

19.2462 2.6757

2.6757 10.7839. (checks)

>> GC1=[GC22(2) GC21(2)

GC12(2) GC11(2)] =

1.9223 0.2420

2.4011 -1.2044

>> tempG1=GC1*inv(GC0) =

0.4439 -0.2029

0.4568 -0.6697

>> tempG0=GC0*inv(GC0) =

1.0000 0.0000

0 1.0000 (checks)

>> inv(S) =

0.0538 0

0 0.0927

>> S = 18.5823 0

0 10.7839

repeated, these are MMSE prediction error variances based on past sequence values

and spatial estimation of upper mode 2 from lower mode 1.

>> G22=[G0(1,1) G1(1,1)]

G21=[G0(1,2) G1(1,2)]

G12=[G0(2,1) G1(2,1)]

G11=[G0(2,2) G1(2,2)]

G22 = 1.0000 0.4439

G21 = 0.2481 -0.0927

G12 = 0 0.4568

G11 = 1.0000 -0.5564

>> S(1,1)*conv(G22,G22(2:-1:1))+S(2,2)*conv(G21,G21(2:-1:1)) = 8.0000 23.0000 8.0000

>> S(1,1)*conv(G22,G12(2:-1:1))+S(2,2)*conv(G21,G11(2:-1:1)) = 7.0000 7.0000 -1.0000

>> S(1,1)*conv(G12,G22(2:-1:1))+S(2,2)*conv(G11,G21(2:-1:1)) =-1.0000 7.0000 7.0000
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>> S(1,1)*conv(G12,G12(2:-1:1))+S(2,2)*conv(G11,G11(2:-1:1)) =-6.0000 18.0000 -6.0000

Dr. Swenson’s desired factorization is[
8D−1 + 23 + 8D 7D−1 + 7−D
−D−1 + 7 +D −6D−1 + 18− 6D

]
(D.251)

=

[
1 + .4439D .2481− .0927D
.4568D 1− .5564D

]
·
[

18.5823 0
0 10.7839

]
·
[

1 + .4439D−1 .4568D−1

.2481− .0927D−1 1− .5564D−1

]
D.4.4 MIMO Paley Wiener Criterion and Matrix Filter Realization

Minimum-phase vector signals and matrix filters are of interest in data transmission not only because
they are causal and admit causal invertible inverses (one of the reasons for their study more broadly
in digital signal processing) but because they allow best results with MIMO Decision Feedback as in
Section ??. These minimum-phase matrix filters are also useful in noise whitening. While Section
D.4 provided a direct construction of Gx(D) when Rxx(D) has fractional fraction polynomials, this
subsection provides a more general construction for any more general function that satisfies the MIMO
Paley Wiener criterion provided within.

D.4.4.1 Analytic Functions of Matrices

Analytic functions, like ln(x) and ex as used here, have convergent power-series representations like

ex = 1 + x+
x2

2
+
x3

3
+ ... (D.252)

=

∞∑
m=0

xm

m
(D.253)

ln(x) = (x− 1)− (x− 1)

2
+

(x− 1)2

2
− (x− 1)3

3
+ ... (D.254)

=

∞∑
m=1

(−1)m−1 · (x− 1)m

m
(D.255)

for all values of x. When the argument of the function is a square matrix R, the value of the corresponding
output matrix of the same dimension can be found by insertion of this matrix into the power series, so23

eR =

∞∑
m=0

Rm

m
(D.256)

ln(R) =

∞∑
m=1

(−1)m−1 · (R− I)m

m
. (D.257)

With some care on aversion of commuting matrices, the following will hold:

ln(R1 ·R2) = ln(R1) + ln(R2) (D.258)

eR1+R2 = eR1 · eR2 . (D.259)

D.4.4.2 Necessity and the Sum-Rate Equivalent

Calculation of Sx,0 and Sx,0 = |Sx,0| for a factorizable D-Transform autocorrelation matrix generalizes
Equations (??) to (??) in Section ?? as the matrix generalizations:

Sx,0 = e
1
2π

∫ π
−π ln[Rxx(eω)]·dω or (D.260)

23For non-square matrices, it is usually possible to achieve desired results by forming a square matrix RR∗ and applying
the power series of the function to that “squared” matrix, and then finding the positive square root through Cholesky
Factorization on the result and absorbing the square root of the diagonal matrix of Cholesky factors into each of the
triangular matrices.
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ln (Sx,0) =
1

2π

∫ π

−π
ln [Rxx(eω)] · dω (D.261)

Sx,0 = e
1
2π

∫ π
−π ln|Rxx(eω)|·dω or (D.262)

ln (Sx,0) =
1

2π

∫ π

−π
ln |Rxx(eω)| · dω , (D.263)

which have components corresponding to the first and last terms of the factorization in ( D.213 )
integrating to zero because they are periodic ( see D.254) for ln(x + 1)) and being integrated over one
period of the fundamental frequency, except for the constant term that is monic and then also integrates
to zero because ln(1) = 0. The integral in (D.263) must be finite for the exponent in (D.262) to be finite
(also, any exponent of a real function is a real positive number, so Sx,0 > 0 and real, consistent with
the power spectral density). That integral of the natural log of a power-spectral density is fundamental
in filter realization and in the MIMO Paley Wiener Criterion. Again, Dx is the same for Rxx(D) as
for ln [Rxx(D)] and includes the unit circle; this also means the convergence region for ln [Gx(D)] also
is the same as for Gx(D) and includes the unit circle. Further the convergence region for G−1

x (D) also
includes the unit circle and is the same as for ln

[
G−1
x (D)

]
.

The calculation of S−1
x,0 has a very similar form to that of Sx,0:

S−1
x,0 = e−

1
2π

∫ π
−π ln|Rxx(eω)|·dω or (D.264)

ln
(
S−1
x,0
)

= − 1

2π

∫ π

−π
ln |Rxx(eω)| · dω , (D.265)

Because (D.263) and (D.265) are similar, just differing in sign, and because any functions of Gx
(including in particular ln or | • |) are all periodic in ω, factorizability also implies

1

2π

∫ π

−π

∣∣ln{∣∣Rxx(e−ω)
∣∣}∣∣ · dω <∞ (D.266)

(or the function ln {|Rxx(e−ω)|} exists because this log-autocorrelation’s determinant is absolutely inte-
grable). Essentially the finite nature of this integral corresponding to factorizable Rxx(D) means that
the sequence’s Fourier Transform has no frequencies (except point frequencies of non-zero measure) at
which it can be either zero or infinite. The non-infinite nature is consistent with the basic criterion for
the norm to be absolutely integrable, but the the non-zero portion corresponds intuitively to saying any
non-satisfying matrix filter has some singular “null components.” Any energy in these null components
would be linear combinations of energy of other components. Null components thus carry no new infor-
mation, and can be viewed as useless: A signal with such a null components is wasting energy on these
components that exist elsewhere already. A matrix filter with such a null space would block any in-
formation transmitted in that corresponding null space, making reliable data-detection/communication
impossible (kind of a MIMO inverse to the reversibility concept and theorem in Chapter 1). Such a
filter would not be reversible (causally or otherwise). Both infinite size and singular situations should
be avoided. Chapter 5 will deal with such singularity and null spaces far more precisely.

The following MIMO Paley-Wiener Theorem from discrete-time spectral factorization theory for-
malizes when an autocorrelation function is “factorizable.” The ensuing development will essentially
prove the theorem while theoretically developing a way to produce generally the factors Gx(D) and
thus G∗x(D−∗) of the previous subsection. This development also finds a useful way to handle the
continuous-time case, which can be useful in noise-whitening. The reader is again reminded that
any positive-semidefinite matrix and corresponding inverse transform is a candidate for
spectral factorization.

Theorem D.4.1 [Paley Wiener Criterion] If Rxx(e−ω) is any power spectrum such
that both |Rxx(e−ω)| and thus |ln {|Rxx(e−ω)|}| are absolutely integrable over −π <
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ω ≤ π, and Rxx(D) is the corresponding autocorrelation matrix, then there exists a
canonical discrete-time response Gx(D) that satisfies the equation

Rxx(D) = Gx(D) · Sx,0 ·G∗x(D−∗), (D.267)

where Gx(D) is canonical, and where the diagonal matrix of all positive elements Sx,0
is given by

ln [Sx,0] =
1

2π

∫ π
T

− πT
lnRxx(e−ω)dω . (D.268)

ln |Sx,0| =
1

2π

∫ π
T

− πT

∣∣lnRxx(e−ω)
∣∣ dω . (D.269)

For Sx,0 to be finite, Rxx(e−ω) must satisfy the discrete-time MIMO Paley-
Wiener Criterion (PWC)

ln |Sx,0| =
1

2π

∫ π
T

− πT
| lnRxx(e−ω)|dω <∞ . (D.270)

The continuous-time equivalent of this MIMO PWC is that the Fourier Transform of the
continuous-time autocorrelation function is factorizable

Rxcxc(s) = Gxc(s) · Sxc,0 ·G∗xc(−s
∗) , (D.271)

where Gxc(s) is minimum phase (all poles and zeros in the left half plane or on axis in
limiting sense), with upper triangular monic |Gxc(0)|, whenever

1

2π

∫ ∞
−∞

| lnRxcxc(ωc)|
1 + ω2

c

dωc <∞ . (D.272)

Constructive Proof: The equivalence of the two PW criteria in (D.270) and (D.272)
(discrete- and continuous-time) follows directly from Equations (D.105) to (D.108). However,
it remains to show that the condition is necessary and sufficient for the factorization to exist.
The necessity of the criterion followed previously when it was shown that factorizability lead
to the PWC being satisfied. The sufficiency proof will be constructive from the criterion
itself.

The desired positive-definite matrix is any square root R
1/2
xx(e−ω) that can, for instance, be

found by Cholesky Factorization (and absorbing positive diagonal square-root equally into
the two upper and lower factors), and this function in turn has a natural-log real matrix

A(e−ω)
∆
= ln

[
R

1/2
xx(e−ω)

]
. (D.273)

A(e−ω) itself is periodic and by the MIMO PWC integral equation is absolutely integrable
and so has a corresponding Fourier representation

A(e−ω) =

∞∑
k=−∞

Ak · e−ωk (D.274)

Ak =
1

2π

∫ π

−π
A(e−ω) · eω · dω . (D.275)
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Because the Fourier TransformA(e−ω) is positive real, then Ak = A∗−k, and the D-Transform
simplifies to

A(D) = A0 +

∞∑
k=1

Ak ·Dk +

−∞∑
l=−1

Al ·Dl , (D.276)

and then by letting k = −l in the second sum,

A(D) = A0 +

∞∑
k=1

Ak ·Dk +

∞∑
k=1

A−k ·Dk (D.277)

= A0 +

∞∑
k=1

[Ak +A−k] ·Dk (D.278)

= a0 + 2 ·
∞∑
k=1

< [Ak] ·Dk , (D.279)

which defines a causal sequence Ak that corresponds to ln
[
R

1/2
xx(D)

]
. So,

Rxx(D) = eA(D) · eA
∗(D−∗) . (D.280)

Then, the canonical factorization’s MIMO components are:

Sx,0 = e
1
2π

∫ π
−π ln[Rxx(e−ω)]·dω (D.281)

Gx(D) = eA(D) · S−1/2
x,0 . (D.282)

There is a second step that recognizes that Sx,0 is not diagonal, just positive definite constant.
This matrix itself is factored as a constant-matrix Cholesky factorization to

Sx,0 = Gx,0 · Sx,0 ·G∗x,0 . (D.283)

with Gx,0 as monic upper triangular and Sx,0 positive definite diagonal. Then the canonical
factor is

Gx(D) = eA(D) ·G−1
x,0 · S

−1/2
x,0 . (D.284)

The corresponding continuous-time spectrum factorization then would be found withRxcxc(s) =

Rxx

(
1−s
1+s

)
and thus Ac(s) = A

(
1−s
1+s

)
. Then, with s→ ωc

Sxc,0 = e
1
2π

∫∞
−∞

ln[Rxcxc (ωc)]
1+ω2

c
·dωc

(D.285)

Gxc(s) = eAc(s) · S−1/2
xc,0 . (D.286)

The continuous-time second step recognizes that Sxc,0 is not diagonal, just positive definite
constant. This matrix itself is factored as a constant-matrix Cholesky factorization to

Sxc,0 = Gxc,0 · Sxc,0 ·G∗xc,0 . (D.287)

withGxc,0 as monic upper triangular and Sxc,0 positive definite diagonal. Then the canonical
factor is

Gxc(D) = eAc(D) ·G−1
xc,0 · S

−1/2
xc,0 . (D.288)

If the original desired spectra were defined in continuous time, then it could be mapped into
discrete time through ωc → tan(ω2 ) and then proceeding with that discrete-time mapped
equivalent through the process above, ultimately leading to Equations (D.285) and (D.286).
Sufficiency has thus been established in both discrete- and continuous-time. QED.
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