
Appendix B - Finite Fields and
Coset Codes

B Finite Fields and Coset Codes 502
B.1 Finite Field Algebra . 503

B.1.1 Groups, Rings, and Fields . 503
B.1.2 Galois Fields . 504

B.1.2.1 Conjugates . 510
B.2 Lattices . 512

B.2.1 Elementary Lattice Operations . 512
B.2.2 Binary Lattices and Codes . 513

B.2.2.1 Association of lattices with binary codes 515
One-dimensional partitioning of binary lattices 515
Two-dimensional partitioning of binary lattices: 515
Four-dimensional parititioning of binary lattices 516
Eight-dimensional parititioning of binary lattices: 517

B.2.2.2 16, 24, and 32 dimensional partitioning chains 518
B.3 Coset Codes, Lattices, and Partitions . 519

B.3.1 Gain of Coset Codes . 520
B.3.2 Mapping By Set Partitioning . 523

B.3.2.1 Partitioning of the Integer Lattice . 524
B.3.2.2 Partition Trees and Towers . 524

B.4 One- and Two-dimensional Trellis Codes . 528
B.4.1 Rate 1/2 Code . 528
B.4.2 A simple rate 2/3 Trellis Code . 528
B.4.3 Code Design in One and Two Dimensions . 531

B.4.3.1 One-Dimensional Trellis Codes . 531
B.4.3.2 Two-Dimensional Codes . 533
B.4.3.3 Phase-Shift Keying Codes . 534
B.4.3.4 Design Examples . 535
B.4.3.5 Decision-Feedback Sequence Estimation 538

B.4.4 Decoder Complexity Measures . 538
B.5 Multidimensional Trellis Codes . 539

B.5.1 Lattice Codes and Multidimensional Partitioning 539
B.5.1.1 Rectangular Lattice Family . 539

Simple Lattice Constructions: . 539
B.5.1.2 D - Lattice Family . 541
B.5.1.3 The DE8 Lattice . 542
B.5.1.4 The Gosset (E8) Lattice . 543
B.5.1.5 4 and 8 Dimensional Partition Chains . 544

B.5.2 Multidimensional Trellis Codes . 552

500

B.5.2.1 Multidimensional Trellis Code Examples 554
B.5.2.2 4D Code Table . 559
B.5.2.3 8D Code Table . 559

B.6 Theory of the Coset Code Implementation . 560
B.6.1 Encoder Simplification . 560

4D Encoder with rate 2/3, and Z4/R4D4 560
8D Encoder with rate 3/4, and Z8/E8 . 563

B.6.2 Decoder Complexity . 565
Decoding the D4 Lattice . 565

B.6.3 Decoding the Gossett (E8) Lattice . 567
B.6.4 Lattice Decoding Table . 567

B.7 Various Results in Encoder Realization Theory . 569
B.7.1 Invariant Factors Decomposition . 569

The IFD Algorithm: . 569
IFD Observations: . 570

B.7.2 Canonical Realizations of Convolutional Encoders 573
B.7.2.1 Invariant Factors . 574
B.7.2.2 Extended Invariant Factors . 577

Scrambler Interpretation of the Invariant Factors Decomposition of G . . . 578
B.7.2.3 Tests for a Noncatastrophic Code: . 579
B.7.2.4 Minimal Encoders . 579
B.7.2.5 Basic Encoders . 582
B.7.2.6 Construction of Minimal Encoders . 583
B.7.2.7 Canonical Systematic Realization . 585

Bibliography 590

Index 591

501

Appendix B

Finite Fields and Coset Codes

Sections B.3-B.6 may look a little out of place here and correspond to an older version where these trellis
and coset codes were in the main coding chapter. They are presented here for completeness, but largely
superseded by LDPC, turbo, and polar codes.

502

B.1 Finite Field Algebra

Coding theory uses the concepts of finite fields, algebras, groups and rings. This brief appendix concisely
reviews the basics of these topics.

B.1.1 Groups, Rings, and Fields

A group is a set of objects, that is closed under an operation addition, associative over that same
operation, and for which an identity and inverse exist in the group. More formally,

Definition B.1.1 [Group] A group S is a set, with a well-defined operation for any
two members of that set, call it addition and denote it by +, that satisfies the following
four properties:

1. Closure ∀ s1, s2 ∈ S, the sum s1 + s2 ∈ S.

2. Associative ∀ s1, s2, s3 ∈ S, s1 + (s2 + s3) = (s1 + s2) + s3.

3. Identity There exists an identity element 0 such that s+ 0 = 0 + s = s, ∀ s ∈ S.

4. Inverse ∀ s ∈ S, there exists an inverse element (−s) ∈ S such that s + (−s) =
(−s) + s = 0.

The identity element 0 is unique. When the group also exhibits the commutative property,
s1 + s2 = s2 + s1, the group is said to be an Abelian group. A subgroup is a subset of S that satisfies
all the properties of a group.

A ring is an Abelian group with the additional operation of multiplication, such that closure and as-
sociativity also hold for multiplication, and that multiplication distributes over addition. More formally,

Definition B.1.2 (Ring) A ring R is an Abelian group, with the additional well-defined
operation for any two members of that set, call it multiplication and denote it by · (or by
no operation symbol at all), that satisfies the following three properties:

1. Closure for multiplication ∀ r1, r2 ∈ R, the product r1 · r2 ∈ R.

2. Associative for multiplication ∀ r1, r2, r3 ∈ R, r1 · (r2 · r3) = (r1 · r2) · r3.

3. Distributive ∀ r1, r2, r3 ∈ R, we have r1 · (r2 + r3) = r1 · r2 + r1 · r3 and (r1 + r2) · r3 =
r1 · r3 + r2 · r3.

A ring often has a multiplicative identity denoted by 1, and if multiplication is commutative, the
ring is called a commutative ring. Any element of a ring R, call it r, for which a multiplicative inverse
1/r also exists in R is called a unit or prime. A field is a ring that defines division:

Definition B.1.3 [Field] A field F is a ring, with the additional operation of division,
the inverse operation to multiplication, denoted by /. That is for any f1, f2 ∈ F , with
f2 6= 0, then f1/f2 = f3 ∈ F , and f3 · f2 = f1.

A somewhat weaker version of division occurs in what is known as the integral domain, which is
a ring with the following additional property: f1 · f2 = f1 · f3 implies f2 = f3 if f1 6= 0.

A field may contain a finite or infinite number of member objects. A field of interest in this chapter
is the finite field with two elements GF (2) = {0, 1}, with addition defined by 0 + 0 = 0, 0 + 1 = 1, and

503

1 + 1 = 0, multiplication defined by 0 · 0 = 0, 0 · 1 = 0, and 1 · 1 = 1. The only unit or prime in GF (2)
is 1.

Another example of a field is F (D) defined in Section 8.1, the ratios of all binary polynomials in D,
where multiplication and division are defined in the obvious way, with modulo 2 addition.

Vector spaces are used often in this text in other Chapters and there often refer to vectors of real or
complex numbers. More generally, and specifically, in coding, the vector space can have elements in any
field, in particular a fine field.

Definition B.1.4 [Vector Space] An n-dimensional Vector Space V over a field F
contains elements called vectors v = [vn−1, ..., v0], each of whose components vi i =
0, ..., n− 1 is itself an element in the field F . The vector space is closed under addition
(because the field is) and also under scalar multiplication where fi ·v ∈ V for any element
fi ∈ F where

fiv = [fi · vn−1, ..., fi · v0] . (B.1)

The vector space captures the commutativity, associativity, zero element (vector of all
zero components), and additive inverse of addition and multiplication (by scalar of each
element) of the field F . Similarly, the mulitplicative identity is the scalar fi = 1. A set
of J vectors is linearly independent if

J∑
j=1

fj · vj = 0 (B.2)

necessarily implies that
fj = 0 ∀j . (B.3)

B.1.2 Galois Fields

Galois Fields are essentially based on arithmetic modulo a prime number p (or a power of a prime
number pm as to be shown shortly). The elements of a Galois field can be written

GF (p) = {0, 1, ..., p− 1} . (B.4)

The notation Fp
∆
= GF (p) often also finds use in this text and elsewhere. The simplest Galois Field

GF (2) uses binary arithmetic, where the prime is p = 2 and the elements are 0 and 1. Addition and
subtraction reduce to binary “exclusive or,” multiplication is binary “and,” while division for non-zero
elements is trivially 1/1=1. Figure ?? illustrates a less trivial example for p = 5, or GF (5). In Figure
??, a modulo-arithmetic circle illustrates addition, consistent with this text’s use of modulo addition.
Addition corresponds to moving clockwise around the circle while subtraction is counter clockwise. A
multiplication table also appears in Figure ??. This choice of multiplication definition simply multiplies
integers and then takes the result modulo 5. Each row or column of this symmetric multiplication table
contains each element of GF (5) only once, which means that the reciprocal of an element is the column
index for the entry 1 in the corresponding row of that element. (Division then occurs by multiplying by
the reciprocal.) This reciprocal is the unique multiplicative inverse needed for a field. This subsection in
particular consolidates many concepts introduced by Prof John Gill in his Stanford error-correcting-codes
class [1].

504

0=p=5

1

23

4

+

140 ==aa

1a

2a

3a

2=a

3=a

3a
1a

2a

1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

´

a a2 a3 a4

2 4 3 1

3 4 2 1

𝐺𝐹 5 = 0	 1	 𝛼	 𝛼!	 𝛼"	

Figure B.1: Illustration of GF (5) addition- and multiplication-groups’ closures.

Lemma B.1.1 [GF(p)] The elements 0, 1, ... p−1 of GF (p) form a field under addition
and multiplication modulo p, where p is prime.

Proof: Closure of addition, subtraction (additive inverse), closure of multiplication, and
the zero and identity element (1) follow trivially from the properties of integers, as do
commutative and associative properties (all modulo p). Division and the multiplicative
inverse do not trivially follow. A multiplication table has each row and column containing
all the non-zero elements exactly once: This completeness of a row (or column) follows
from observing that multiplication of an element 0 < α ≤ p− 1 by two distinct elements
0 < a1 ≤ p− 1 and 0 < a2 < a1 cannot create the same result modulo p, for if they did

α · a1 = p · d1 + r (B.5)

α · a2 = p · d2 + r . (B.6)

Equivalently,
α · (a1 − a2) = p · (d1 − d2) > 0 and = (0)p . (B.7)

For such an equality to hold true, noting that α < p and also 0 < a1 − a2 < p since
a1 and a2 are distinct, then neither the first or second term on the left can equal p and
both are less than p. This necessarily implies 0 < d1 − d2 ≤ min(α, (a1 − a2)) and thus

α(a1 − a2)

d1 − d2
= p (B.8)

a factorization of a prime number and a contradiction. Thus, each element can occur
only once in each row and column if p is prime. QED.

505

Galois Fields often equivalently represent their nonzero elements by power of a primitive element α

GF (p) = {0, 1, α1, α2, ..., αp−2} . (B.9)

Figure B.1 illustrates the use of both α = 2 and α = 3 to generate GF (5). The successive powers of
each such primitive element (primative elements are prime numbers in this case) visits each and every
non-zero GF (5) element exactly once before αp−1 = 1, and α4 = 1 in both cases. The element α = 4
does not generate the entire field and instead generates {0, 1, α = 4}, a subfield of 3 elements (which is
GF (3) where addition is refined with these symbols as 1 + 1 = α, α + α = 1, and 1 + α = 0 essentially
redefining the symbol 4 to be 2. This “symbol interpretation” of the Galois Field is often good to keep
in mind as addition and multiplication need not necessarily be defined in a direct correspondence with
integer addition and multiplication (even though this example has done so outside of this observation
on GF (3) as a subfield of GF (5) for the elements 0, 1, and 4. The multiplication table in Figure B.1,
and thus multiplication, is invariant to the use of the prime α as 2 or 3.

More generally for GF (p), the multiplicative identity is α0 = 1 for all elements α ∈ GF (p). The
(p−1)th power of any element must always be unity, αp−1 = 1 since the field contains p elements and thus
a non-zero element’s powers must repeat some nonzero value once a maximum p− 1 non-zero elements
have been generated. This value that first repeats must be 1 by the uniqueness of the inverse already
established. From the uniqueness of the rows and columns of the multiplication table, any prime-integer
α > 1 in GF (p) is a primitive element and can be selected for the value of α to generate all the other
nonzero GF (p) elements α0 = 1, α1, α2, ..., αp−2. A non-prime integer has the liability of being the
product of primes, so that each movement corresponding to another multiplication by α in going from αi

to αi+1 actually corresponds to multiplication by each element in this non-prime’s factorization (and so
the repeating of the sequence occurs earlier because there are more steps implicit in this multiplication
(or in fact more than one multiplication) and so “we get to 1 faster.”

The use of the notation αi is useful for multiplication because the exponents can be added, so

αi · αj = α(i+j)(p−1) . (B.10)

Adding of exponents is executed mod p− 1 because αp−1 = 1 ∀α ∈ GF (p). Further, division is executed
by multiplying by the inverse α−i = αp−1−i so simple addition on exponents allows all multiplication
and division within the field. Storage of each element’s index as a power of α and its inverse’s index
as a power of α, along with simple mod-p addition or subtraction allows all computation with minimal
computational effort. If addition is thus viewed as trivial, then perhaps the circle in Figure B.1 is more
useful. Each multiplication by α consistently refers to rotation by 90 degrees clockwise in the figure (and
division by α is rotation by 90 degrees in the opposite direction).

The use of Galois Fields is perhaps most useful when extended to vectors of up to 2m − 1 elements
(the elements are typically vectors of m bits/pits). Such a Galois Field is denoted GF (pm) where p
is prime. This field has pm distinct elements. The elements of GF (pm) are m-dimensional vectors or
m-tuples of GF (p) elements. Typically p = 2 so these become vectors of bits, typically with m = 8 (so
bytes in a digital system). However, any prime value of p and any positive integer m defines a Galois
Field. It is convenient in such fields to think of an element as represented by a polynomial

u(D) = u0 + u1 ·D + u2 ·D2 + ...+ um−1D
m−1 (B.11)

where ui ∈ GF (p) ∀ i = 0, ...,m. The powers of the variable D are used to represent positions within
the vector, and multiplication by D corresponds to a shift of the elements (dealing with Dm will be
addressed shortly). Addition and multiplication in GF (pm) is modulo a degree-m prime polynomial
g(D) with similarly αi ∈ GF (p), and necessarily g0 6= 0 and gm−1 6= 0. Thus, a remainder r(D) modulo
g(D) with deg(r(D)) < m represents any u(D) with deg(u(D)) ≥ m, or with q(D) also a degree m or
less polynomial with coefficients in GF (p):

u(D) = q(D) · g(D) ·+r(D) . (B.12)

Equivalently
(u(D))g(D) = r(D) . (B.13)

506

Multiplication and addition are based on GF (p) multiplication and additon, respectively, of poly-
nomial coefficients in GF (p) to create new coefficients in GF (p) but then followed by a modulo-g(D),
which follows by simple substitution of g(D) = 0 in the expression, so for instance if

u(D) · v(D) = f(D) =

deg(f)∑
i=0

fi ·Di (B.14)

then powers of Di≥m−1 are found by (potentially multiple uses of) the substitution Dm−1 = 1 + g1 ·
D + ... + gm−2 · Dm−2 that causes g(D) = 0. This concept of multiplication differs significantly from
typical binary multiplication in digital computers where the multiplication of two 8-bit quantities would
produce a 16-bit result. In Galois fields, multiplication of two 8-bit quantities produces another 8-bit
quantity.

EXAMPLE B.1.1 [GF (22) = F4 and GF (23) = F8] The prime binary polynomial of degree 2 is
g(D) = 1 +D +D2 with degree-1 elements {0, 1, D, 1 +D}. The addition table is:

⊕ 0 1 D 1+D
0 0 1 D 1+D
1 1 0 1+D D
D D 1+D 0 1

1+D 1+D D 1 0

⊕ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

The addition table’s entries The field elements D and 1 +D are interchangeable. Any F4 element is its
additive inverse. The reader may observe this generally true for any F2m because the field elements are
themselves binary polynomials. For this reason in F2m , as with binary subtraction, the addition and
subtraction operations are interchangeable. Referral to Figure B.1 shows that equivalence of addition
and subtraction does not necessarily hold for Galois Fields based on p 6= 2m.

The primitive elements of F4 are α1 = D and α2 = D2 = 1 +D (because the operation modulo g(D)
will set D2 = 1 +D). F4 multiplication tables are
⊗ 0 1 D 1+D
0 0 0 0 0
1 0 1 D 1+D
D 0 D 1+D 1

1+D 0 1+D 1 D

or (lsb first)

⊗ 00 10 01 11
00 00 00 00 00
10 00 10 01 11
01 00 01 11 10
11 00 11 10 01

or (lsb last)

⊗ 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

The writing of binary polynomials in ascending power of D is consistent with Matlab’s lowest entry (lsb)
on left (first) instead of right (last). Writing the polynomial in descending power of D is consistent with
this text’s highest index at top/left convention. The polynomial approach actually provides flexibility in
translation to either. Figure B.2 illustrates only F4’s multiplicative group with prime elements around
the boundary.

507

1	 𝛼	 𝛼!	

𝛼!	
𝛼"	

𝛼# = 𝛼$ = 1

×
×	𝛼 	𝛼 	 = 1 + 𝐷	𝑜𝑟	𝐷

𝐷	𝑜𝑟	1 + 𝐷1 + 𝐷	 𝑜𝑟	𝐷
Figure B.2: Multiplicative generation of nonzero elements in GF (5).

F8 repeats a similar exercise. Since 1 +D7 = (1 +D) · (1 +D +D3) · (1 +D2 +D3), there are two
choices for the prime polynomial. This example choses g(D) = 1 + D + D3. The primitive elements of
degree 2 or less are D, 1 +D, and 1 +D +D2, any one of which can be used to definite multiplication,
so this example selects α1 = D. F8’s elements are therefore:

i GF(8) element
αi lsb first lsb last

−∞ 0 000 0
0 1 100 1
1 D 010 2
2 D2 001 4
3 1 +D 011 6
4 D +D2 110 3
5 1 +D +D2 111 7
6 1 +D2 010 5

The corresponding addition table with lsb FIRST is:
⊕ 0 1 D D2 1 + D D + D2 1 + D + D2 1 + D2

0 0 1 D D2 1 + D D + D2 1 + D + D2 1 + D2

1 1 0 1 + D 1 + D2 D 1 + D + D2 D + D2 D2

D D 1 + D 0 D + D2 1 D2 1 + D2 1 + D + D2

D2 D2 1 + D2 D + D2 0 1 + D + D2 D 1 + D 1

1 + D 1 + D D 1 1 + D + D2 0 1 + D2 D2 D + D2

D + D2 D + D2 1 + D + D2 D2 D 1 + D2 0 1 1 + D

1 + D + D2 1 + D + D2 D + D2 1 + D2 1 + D D2 1 0 D

1 + D2 1 + D2 D2 1 + D + D2 1 D + D2 1 + D D 0

or with lsb last and octal notation, as in the above GF (8)-element table’s last column.

⊕ 0 1 2 4 6 3 7 5

0 0 1 2 4 6 3 7 5
1 1 0 3 5 2 7 6 4
2 2 3 0 6 4 1 5 7
4 4 5 6 0 7 2 3 1
6 6 2 1 7 0 5 4 6
3 3 7 4 2 5 0 1 3
7 7 6 5 3 4 1 0 2
5 5 4 7 1 6 3 2 0

.

508

The multiplication tables require multiplication of the two polynomials and then substituting D3 = 1+D,
but can more simply determined by using the able list of elements and that αi · αj = αi+j (where i+ j
is in Z).

⊗ 0 1 D D2 1 + D D + D2 1 + D + D2 1 + D2

0 0 0 0 0 0 0 0 0

1 0 1 D D2 1 + D D + D2 1 + D + D2 1 + D2

D 0 D D2 1 + D D + D2 1 + D + D2 1 + D2 1

D2 0 D2 1 + D D + D2 1 + D + D2 1 + D2 1 D

1 + D 0 1 + D D + D2 1 + D + D2 1 + D2 1 D D2

D + D2 0 D + D2 1 + D + D2 1 + D2 1 D D2 1 + D

1 + D + D2 0 1 + D + D2 1 + D2 1 D D2 1 + D D + D2

1 + D2 0 1 + D2 1 D D2 1 + D D + D2 1 + D + D2

.

Again using the lsb last notation, the table can be rewritten:

⊗ 0 1 2 4 6 3 7 5

0 0 0 0 0 0 0 0 0
1 0 1 2 4 6 3 7 5
2 0 2 4 6 3 7 5 1
4 0 4 6 3 7 5 1 2
6 0 6 3 7 5 1 2 4
3 0 3 7 5 1 2 4 6
7 0 7 5 1 2 4 6 3
5 0 5 1 2 4 6 3 7

.

Matlab has a finite field facility that allows simple execution of Galois Field arithmetic. For example
the following sequence generates Figure B.1’s multiplication table for GF (5):

>> A=gf(ones(4,1)*[0 1 2 3],2)

A = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

>> B=gf([0 1 2 3]’*ones(1,4),2)

B = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

>> A.*B

ans = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

0 0 0 0

0 1 2 3

0 2 3 1

0 3 1 2

A slightly more complicated example is GF(16) with primitive polynomial g(D) = D4 + D + 1 so
(using hexadecimal notation)

(5 ·B)g(D) =
(
(D2 + 1) · (D3 +D + 1)

)
D4+D+1

(B.15)

=
(
D5 +D3 +D2 +D3 +D + 1

)
g(D)

(B.16)

= D · (D + 1) +D2 +D + 1 = 1 , (B.17)

so B = 5−1 in GF(16). A multiplication table for GF(16) can be found (using Matlab as):

509

A=gf(ones(16,1)*[0:15],4);

B=gf([0:15]’*ones(1,16),4);

A.*B

ans = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 4 6 8 10 12 14 3 1 7 5 11 9 15 13

0 3 6 5 12 15 10 9 11 8 13 14 7 4 1 2

0 4 8 12 3 7 11 15 6 2 14 10 5 1 13 9

0 5 10 15 7 2 13 8 14 11 4 1 9 12 3 6

0 6 12 10 11 13 7 1 5 3 9 15 14 8 2 4

0 7 14 9 15 8 1 6 13 10 3 4 2 5 12 11

0 8 3 11 6 14 5 13 12 4 15 7 10 2 9 1

0 9 1 8 2 11 3 10 4 13 5 12 6 15 7 14

0 10 7 13 14 4 9 3 15 5 8 2 1 11 6 12

0 11 5 14 10 1 15 4 7 12 2 9 13 6 8 3

0 12 11 7 5 9 14 2 10 6 1 13 15 3 4 8

0 13 9 4 1 12 8 5 2 15 11 6 3 14 10 7

0 14 15 1 13 3 2 12 9 7 6 8 4 10 11 5

0 15 13 2 9 6 4 11 1 14 12 3 8 7 5 10

Alternately, enumeration of all 15 powers of a primitive element such as 2:

A=gf(gf((2*ones(16,1)’),4).^[0:15],4)

A = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

1 2 4 8 3 6 12 11 5 10 7 14 15 13 9 1

\begin{verbatim}

where each element appears once until the element 1 repeats itself in the 16th position. Further, the inverses are easily found as

\begin{verbatim}

gf(ones(1,16)./A,4)

1 9 13 15 14 7 10 5 11 12 6 3 8 4 2 1

which is simply the reversed sequence of powers of the primitive element. Thus, essentially 16 (4-bit)
elements could be stored in 8 bytes of memory, adjoined with a high-speed 4-bit adder (for the index)
along with simple 4-places of binary addition to create an exceptionally high-speed and low-cost GF (16)
general purpose arithmetic implementation. Even for GF (256), only 256 bytes of storage and a simple
8-bit adder (plus eight 1-bit adders) are sufficient for high-speed very efficient arithmetic. When one of
the elements is fixed, as is often the case in coding, much further simplification yet is possible, as in a
later subsection.

Primitive elements of GF (pm) cannot be factored when viewed as polynomials with coefficients in
GF (p). Such primitive elements are however be roots of higher-degree polynomials with coefficients in
GF (p), for instance such a primitive element α always satisfies f(D = α) = αp

m−1 − 1 = 0 and f(D)
in this case has coefficients (1 and -1) in GF (p). The polynomial with GF (p) coefficients of minimum
degree for which fα(D) = 0 when D = α is called the minimal polynomial of the primitive element
α. Clearly fα(D) must be a factor of Dp∗m − 1.

B.1.2.1 Conjugates

The polynomial (α+ β)p has binomial expansion

(α+ β)p = αp +

[
p−1∑
k=1

(p
k
)
α ∗ p− kβk

]
+ βp . (B.18)

With mod p arithmetic where p is prime, then(p
k
)

= p · (p− 1) · · · (p− k + 1)

k!
= 0 mod p (B.19)

510

because this quantity is an integer and since k < p cannot divide p, it must divide the remaining factors.
Then the quantity is an integer multiple of p and thus zero. This then means that

(α+ β)p = αp + βp (B.20)

for all prime p in modulo-p arithmetic, and thus for arithmetic in GF (pm) for any m ≥ 1. The statement
is obvious for p = 2 of course. Further, then it is true by induction that

(α+ β)p
i

= αp
i

+ βp
i

(B.21)

since it holds for i = 1 already, and raising (B.21) to the pth power corresponds to i→ i+ 1 and then

(α+ β)p
i+1

=
(
αp

i

+ βp
i
)p

=
(
αp

i
)p

+
(
βp

i
)p

= αp
i+1

+ βp
i+1

. (B.22)

The successive powers of a primitive element αp
i

for i = 0, ...r − 1 are called its conjugates. Since
GF (pm) contains a finite number of elements, eventually this set must repeat and that occurs for the

first r for which αp
r

= 1. The set {α, αp, ..., αpr−1} is called the conjugacy class of the primitive element
α. Each primitive element has its own conjugacy class, and these classes are mutually exclusive (if not
mutually exclusive one the two primitive elements has the other as a factor, a contradiction of their
being prime elements).

All elements in a conjugacy class are roots of the corresponding class’ minimal polynomial. This is
easily proved by noting

[fα(D = α)]
pj

= 0p = 0 (B.23)

=
[
f0 + f1 · α+ ...+ fj · αj

]pj
(B.24)

= fp
j

0 + fp
j

1 · αp + ...+ fp
j

j · α
pj (B.25)

= f0 + f1 · αp + ...+ fj · αp
j

(B.26)

= fα(αp
j

) (B.27)

so αp
j

is also a root. The minimal polynomial has minimum degree and contains all the elements in the
conjugacy class so that degree is equal to the number of elements in the conjugacy class, namely

fα(D) = (D − α) · (D − αp) · · (D − αr−1) l. (B.28)

There is a minimal polynomial for each of the primitive elements (and all products of primitive elements,
generating thus the entire non-zero portion of the Galois Field). Since all the non-zero elements are
determined by

Dpm−1 − 1 = 0 (B.29)

then
Dpm−1 − 1 = (D − 1) ·

∏
α

fα(D) . (B.30)

511

B.2 Lattices

The theory of coset codes depends heavily on the concept of a lattice:

Definition B.2.1 (Lattice) A lattice, Λ, is an N -dimensional group of points that is
closed under addition in that the sum of any two points in the group is also a point in
the group. Lattice addition is presumed to be real vector addition where used in this text.

Any constellation that is a subset of Λ is also denoted by Λ (in a slight abuse of notation),
and the number of constellation points in such a Λ is written |Λ|.

Examples of lattices include, Z, the (one-dimensional) set of integers; Z2, the two-dimensional set of

all ordered-pairs of any two integers, Z2 ∆
= {(x1, x2)|x1 ∈ Z, x2 ∈ Z}; ZN , the N -dimensional integer

lattice, and D2, a two-dimensional lattice that is formed by taking “every other point” from Z2 (that is
take the points where x1 + x2 is a even integer). Λ′ is a sublattice of Λ, where a sublattice is defined as

Definition B.2.2 (Sublattice) A sublattice Λ′ of a lattice Λ is an N -dimensional lattice
of points such that each point is also a point in Λ.

Definition B.2.3 (Coset of a Lattice) A coset of a lattice is an N -dimensional set of
points, written Λ + c, described by the translation

Λ + c
∆
=
{
x | x′ + c ; x′ ∈ Λ , c ∈ RN

}
, (B.31)

where RN is the N -dimensional set of vectors with real components.

A sublattice Λ′ partitions its parent lattice Λ into a group of cosets of Λ′ whose union is λ. The
partitioning is written Λ/Λ and the set of all cosets as [Λ/Λ]. The number of subsets is called the order
of the partition, |Λ/Λ′| and thus

Λ = {λ+ c|λ ∈ Λ′ , c ∈ [Λ/Λ]} . (B.32)

A partition chain is formed by further partitioning of the sublattice into its sublattices and can be
abbreviated:

Λ/Λ′/Λ′′ . (B.33)

As a simple example of partitioning in two dimensions

Z2/D2/2Z
2/2D2/4Z

4... (B.34)

Each subsequent partition has order 2, that is there are two cosets of the sublattice to form the immediate
parent lattice. Also, a four-way partition would be Z2/2Z4 which has |Z2/2Z4| = 4 and

[
Z2/2Z4

]
=

{(0, 0), (1, 0), (0, 1), (1, 1)}. More sophisticated lattices in two and higher dimensions are introduced
and used in Sections B.5 and code6.

B.2.1 Elementary Lattice Operations

The cartesian product of one lattice with another has dimensionality equal to the sum of the dimen-
sionality of the original two lattices and is formed (as was defined in Chapter 1) by taking all possible
points in the first lattice and pairing them with each and every point in the second lattice. This is
typically written

Λ1 ⊗ Λ2 = {(λ1, λ2) | λ1 ∈ Λ1 , λ2 ∈ Λ2} . (B.35)

An important special case of the cartesian product for lattices is the so-called squaring construction:

Definition B.2.4 (Squaring Construction) The squaring construction, performed on
a lattice Λ, is given by

Λ2 ∆
= Λ⊗ Λ , (B.36)

that is, the (cartesian) product of Λ with itself.

512

Examples of the squaring construction are Z2 = Z ⊗ Z, Z4 = Z2 ⊗ Z2, and Z8 = Z4 ⊗ Z4.
The cartesian product has a “distributive” property over set union:(

A
⋃
B
)
⊗
(
C
⋃
D
)

= (A⊗ C)
⋃

(A⊗D)
⋃

(B ⊗ C)
⋃

(B ⊗D) . (B.37)

The Rotation Operator RN is used to rotate a lattice when N is even.

Definition B.2.5 (Rotation Operator) The rotation operator R2 is defined by

R2
∆
=

[
1 1
1 −1

]
(B.38)

It is applied to a two-dimensional lattice Λ in the following sense:

R2Λ =

{
(x, y) |

[
x
y

]
= R2

[
λx
λy

]
3 (λx, λy) ∈ Λ

}
. (B.39)

A larger-dimensional rotation matrix is computed recursively according to

R2N =

[
RN 0
0 RN

]
. (B.40)

B.2.2 Binary Lattices and Codes

Binary lattices characterize most used coset codes. A lattice Λ(N, k) is a binary lattice if it can be
partioned by the lattice 2ZN . In other words, a partition chain

ZN/Λ(N,k)/2Z
N (B.41)

exists for a binary lattice. The overall partition ZN/2ZN clearly has order |ZN/2ZN | = 2N . When the
subscript (N, k) is used, then

|ZN/Λ(N,k)| = 2N−k = 2rG (B.42)

|Λ(N,k)/2Z
N | = 2k (B.43)

so that rG
∆
= N − k. The number rG is associated with the “number of parity bits” of a related

binary code, just as rG is used in Section B.5 to characterize the number of parity bits in underlying
convolutional codes. A binary lattice may be mapped to a binary code C with generator G and rG
parity bits so that N -dimensional binary codewords v are generated from any binary input k-tuple u
according to

v = uG . (B.44)

Any point in the corresponding binary lattice, λ, can be constructed as

λ = v + 2ZN . (B.45)

Essentially then the 2k distinct codewords of the binary code C are the set of coset leaders in the
partition of the binary lattice Λ(N,k) by 2ZN . This may also be written as

λ = v + 2m , (B.46)

where m ∈ ZN . The mapping to a binary code can provide a simple mechanism to generate points in
the binary lattice. As discussed in Section ??, a dual code for the binary code is defined by a parity
matrix H for the original code. The parity matrix H has the property for any codeword v in C that

vH∗ = 0 , (B.47)

513

or the rows of the parity matrix are orthogonal to the codewords. The dimensionality of the matrix H
is (N − k)×N = rG ×N and defines the dual code C⊥ such dual-code codewords are generated by any
(N − k) dimensional binary vector according to

v⊥ = uH∗ . (B.48)

Any codeword in the dual code is orthogonal to all codewords in the original code and vice-versa:

v⊥v∗ = 0 . (B.49)

The dual code of a linear binary code is clearly also a linear binary code1 and thus defines a binary
lattice itself. This binary lattice is known as the dual lattice Λ⊥(N,k. There is a partition chain

ZN/Λ⊥(N,k/2Z
N , (B.50)

with

|ZN/Λ⊥(N,k| = 2k (B.51)

|Λ⊥(N,k/2Z
N | = 2N−k . (B.52)

Then, the inner product of any λ point in the original lattice is orthogonal modulo-2 to any point in the
dual lattice

λ⊥λ∗ = v⊥v∗ + 2 · (some integer vector) (B.53)

or thus (
λ⊥λ∗

)
2

= 0 . (B.54)

The notation (·)2 means modulo-2 on all components (so even integers go to zero and odd integers go
to 1). The dual lattice has 2rG cosets in 2ZN . Decoding of any binary N -vector ṽ for the closest vector
in the code C often computes an rG = (N − k)-dimensional vector syndrome s of ṽ as

s
∆
= ṽH∗ . (B.55)

The syndrome s can be any of the 2rG possible rG-dimensional binary vectors since the rank of H is rG
and ṽ can be any binary vector. The syndrome concept can be generalized to the lattice Λ(N,k) for any
N -dimensional vector in ZN because

s =
(
λ̃H∗

)
2

. (B.56)

An example of such a binary lattice in two dimensions is D2, since Z2/D2/2Z
2. The corresponding

binary code is a rate 1/2 code with rG = 1 and codewords {(0, 0), (1, 1)}. This code is its own
dual. The 2rG = 2 syndromes are the one-dimensional vectors s ∈ {0, 1}. These two one-dimensional
syndromes can be found by taking any two-dimensional binary vector ṽ ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}
and multiplying by H∗ = [1 1]∗.

Any point in a coset of the partition set
[
ZN/Λ(N,k)

]
can again be written as

λ̃ = c+ λ (B.57)

where c ∈ Z2. Thus, any “received” point in the same coset of Λ(N,k) will have the same syndrome,
which is easily proven by writing

s = (c+ λ)H∗ = (c+ v + 2m)H∗ = (cH∗)2 . (B.58)

Thus, the 2rG cosets of Λ(N,k) in ZN are enumerated by any and all of the 2rG possible distinct rG-
dimensinal binary syndrome vectors of the code C, which are simply all possible rG-dimensional binary
vectors.

1If v⊥1 and v⊥2 are in C⊥, then
(
v⊥1 + v⊥2

)
v∗ = 0 and thus

(
v⊥1 + v⊥2

)
is also in C⊥.

514

BSC	
v~

H*	
s

(H-‐1)*	
c

+	
v̂

(G-‐1)*	
û

Figure B.3: Basic syndrome decoder.

The rG-dimensional parity matrix H has a right inverse H−1 such that (binary operations implied)

HH−1 = IrG . (B.59)

Similarly by taking the transpose
(H−1)∗H∗ = IrG . (B.60)

Thus the 2rG N -dimensional coset leaders can be enumerated according to

c =
(
s(H−1)∗

)
2

, (B.61)

where s runs through all 2rG possible binary rG-dimensional vectors. The syndromes correspond to
the 2rG possible error vectors or offsets from actual transmitted codewords on a binary channel. After
computing the syndrome, the corresponding binary vector c that satisfies s = ṽH∗ can be computed
by Equation (B.61, then leading to v̂ = ṽ ⊕ c. If the channel is a BSC, then v̂ is the ML estimate of
the codeword (and indeed if the code is systematic, then the input is determined). For non-systematic
codes, the relationship û = v̂

(
G−1

)∗
determines the ML estimate of the input on the BSC. Figure B.3

illustrates such binary block-code decoding. Syndromes are used in the shaping codes of Section ?? and
in binary block codes of Section ??.

B.2.2.1 Association of lattices with binary codes

Partitionings of lattices can be associated with various binary codes, some of which are well known.
This subsection lists some of those partitionings and associated codes. To describe a binary code, it will
be indicated by an ordered triple (N, k, dfree). Thus, for instance, (4,3,2) would describe a binary code
with 23 = 8 codewords of length 4 bits each and a minimum Hamming distance between the closest 2 of
2 bit positions. A code with (N,k=N,1) must necessarily be uncoded and have free distance 1. A code
with (N,0, ∞) has infinite free distance and only one codeword of all zeros.

One-dimensional partitioning of binary lattices The one-dimensional partitioning chain

Z/2Z (B.62)

is somewhat trivial and corresponds to the code (1,1,1).

Two-dimensional partitioning of binary lattices: The two-dimensional partitioning chain of in-
terest is

Z2/D2/2Z
2 (B.63)

making D2 a binary lattice associated with the code (2,1,2). The codewords of this code are [0 0] and
[1 1]. The lattice D2 can be written as

D2 = 2Z2 + u1 · [1 1]︸︷︷︸
G(2,1,2)

(B.64)

515

where u1 is the single input bit to the rate-1/2 linear binary code with generator GD2
= G(2,1,2) = [1 1].

Such a binary code, and thus the associated lattice, is its own dual so

HD2
= GD2

= GD⊥2 (B.65)

and
H−∗ = [0 1] (B.66)

is an acceptable left inverse for H∗.

Four-dimensional parititioning of binary lattices The four-dimensional partitioning chain of
most interest in code is

Z4/D4/R4Z
4/R4D4/2Z

4 , (B.67)

which is equivalent to the linear binary code partitioning chaing (each linear code is a linear binary-code
subset of its parent in the chain)

(4, 4, 1)︸ ︷︷ ︸
Z4

/ (4, 3, 2)︸ ︷︷ ︸
D4

/ (4, 2, 2)︸ ︷︷ ︸
R4Z4

/ (4, 1, 4)︸ ︷︷ ︸
R4D4

/ (4, 0,∞)︸ ︷︷ ︸
2Z4

. (B.68)

The generating matrices can easily be built from the bottom of the chain upward:

R4D4 = 2Z4 + u1 ·
[

1 1 1 1
]︸ ︷︷ ︸

(4,1,4)

(B.69)

R4Z
4 = 2Z4 + [u2 u1]

[
1 0 1 0
1 1 1 1

]
︸ ︷︷ ︸

(4,2,2)

(B.70)

D4 = 2Z4 + [u3 u2 u1]

 0 1 1 0
1 0 1 0
1 1 1 1

︸ ︷︷ ︸

(4,3,2)

(B.71)

Z4 = 2Z4 + [u4 u3 u2 u1]

0 0 0 1
0 1 1 0
1 0 1 0
1 1 1 1

 (B.72)

Each successive step adds another row to the generator for the partitioning. The dual codes also form
a “reverse” partition chain

(4, 4, 1)︸ ︷︷ ︸
Z4

/ (4, 3, 2)︸ ︷︷ ︸
(R4D4

)⊥/ (4, 2, 2)︸ ︷︷ ︸
R4Z4

/ (4, 1, 4)︸ ︷︷ ︸
D⊥4

/ (4, 0,∞)︸ ︷︷ ︸
2Z4

. (B.73)

The lattice R4D4 = (D2)2 is a self-dual and so its generator and parity matrix are the same. However,

D⊥4 = R4D4 (B.74)

(R4D4)⊥ = D4 (B.75)

and thus

HD4 = GR4D4 (B.76)

HR4D4 = GD4 . (B.77)

516

Eight-dimensional parititioning of binary lattices: The eight-dimensional partitioning chain of
most interest in code is

Z8/D8/(D4)2/DE8/E8/R8D8/(R4D4)2/R8DE8/2Z8 , (B.78)

which is equivalent to the linear binary code partitioning chaing (each linear code is a linear binary-code
subset of its parent in the chain)

(8, 8, 1)︸ ︷︷ ︸
Z8

/ (8, 7, 2)︸ ︷︷ ︸
D8

/ (8, 6, 2)︸ ︷︷ ︸
(D4)2

/ (8, 5, 2)︸ ︷︷ ︸
DE8

/ (8, 4, 4)︸ ︷︷ ︸
E8

/ (8, 3, 4)︸ ︷︷ ︸
R8D8

/ (8, 2, 4)︸ ︷︷ ︸
(R4D4)2

/ (8, 1, 4)︸ ︷︷ ︸
R8DE8

/ (8, 0,∞)︸ ︷︷ ︸
Z8

. (B.79)

The generating matrices can easily be built from the bottom of the chain upward, starting this time
with one generator for E8 and working upward:

E8 = Z8 + [u4 u3 u2 u1] +

0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 1 0 1 1 0

︸ ︷︷ ︸

(8,4,4)

(B.80)

DE8 = Z8 + [u5 u4 u3 u2 u1]

0 0 0 0 0 0 1 1
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 1 0 1 1 0

︸ ︷︷ ︸

(8,5,2)

(B.81)

(D4)2 = Z8 + [u6 u5 u4 u3 u2 u1]

0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 1
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 1 0 1 1 0

︸ ︷︷ ︸

(8,6,2)

(B.82)

D8 = Z8 + [u7 u6 u5 u4 u3 u2 u1]

0 0 0 1 0 0 0 1
0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 1
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 1 0 1 1 0

︸ ︷︷ ︸

(8,7,2)

(B.83)

D8 = Z8 + [u8 u7 u6 u5 u4 u3 u2 u1]

0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1
0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 1
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 1 0 1 1 0

︸ ︷︷ ︸

(8,8,1)

(B.84)

These generators are not unique for any of the binary codes, but each provides a partitioning chain that
corresponds to the sequence of binary codes shown, or more generally to binary linear codes with the

517

correct parameters for a valid lattice partitioning chain. Thus, the rows need not match exactly those
in the partitioning sections for multi-dimensional trellis codes and lattices. The Gosset lattice is its own
dual. Also, R8DE8 is the dual of D8, (R4D4)2 would already have been known from four-dimensional
partitioning to be the dual of (D4)2. Finally, R8D8 is the dual of DE8.

B.2.2.2 16, 24, and 32 dimensional partitioning chains

Partitions in 16, 24, and 32 dimensions are sometimes used in advanced coset coding, but not in this
chapter. They may be binary lattices or mod-4 lattices (meaning they have 4ZN as a sub-lattice).
However, it is possible to associate binary lattice partition chains with the code partitioning

(16, 16, 1)/(16, 15, 2)/..../(16, 1, 16)/(16, 0,∞) . (B.85)

Some special lattices sometimes used in coding are

D16
∆
= 2Z16 + (16, 15, 2) (B.86)

H16
∆
= 2Z16 + (16, 11, 4) (B.87)

Λ16
∆
= 4Z16 + 2(16, 15, 2) + (16, 5, 8) (B.88)

The lattices H16 (H for “half” lattice) and Λ16 are sometimes called 16-dimensional “Barnes-Wall”

lattices and Λ16 has a coding gain 4.52 dB (21.5), while H16 has a coding gain of 2
11
8 =4.14 dB. D16 is a

16-dimensional checkerboard and has coding gain of 27/8 = 2.63 dB.
32 dimensional lattices follow the same binary linear code partitioning (now with 32 steps) with

D32
∆
= 2Z32 + (32, 31, 2) (B.89)

X16
∆
= 2Z32 + (32, 26, 4) (B.90)

H32
∆
= 4Z32 + 2(32, 31, 2) + (32, 16, 8) (B.91)

Λ32
∆
= 4Z32 + 2(32, 26, 4) + (32, 6, 16) . (B.92)

These are all also (32-dimensional) Barnes-Wall lattices wit coding gains 2
15
16 =2.82 dB, 2

13
8 =4.89 dB,

2
31
16 =5.83 dB, and 4=6.02, dB respectively.

There is also a 24-dimensional series of partitions in the same fashion that is of particular interest
because it contains a very special high-gain lattice Λ24 known as the Leech lattice

D24
∆
= 2Z24 + (24, 23, 2) (B.93)

X24
∆
= 2Z24 + (24, 18, 2) (B.94)

H24
∆
= 4Z32 + 2(24, 23, 2) + (24, 12, 8) (B.95)

Λ32
∆
= 4Z24 + 2(24, 18, 4) + (24, 6, 16)′ . (B.96)

the notation (24,6,16)’ means the set of all binary linear combinations modulo 4 of a set of six generators
wose coordinates are integers modulo 4. This not a binary lattice, but what is called a mod-4 lattice.
These have coding gains 2

11
12 =2.76 dB, 2

3
2 =4.52 dB, 2

23
12 =5.77 dB, and 4=6.02, dB respectively.

518

B.3 Coset Codes, Lattices, and Partitions

The general coset-code encoder is shown in Figure B.4. This encoder consists of 3 major components:
the binary encoder (G), the coset select (CS), and the signal select (SS). The encoder output,
xm, is an N -dimensional vector sequence of points; m is a symbol-time index. Each (N -dimensional)
symbol of this sequence is chosen from an N -dimensional constellation. The sequences of xm are the
codewords x(D) =

∑
m xmD

m. This signal constellation consists of 2b+rG signal points in some coset
of an N -dimensional real lattice, Λ (for a definition of a lattice and its cosets, see Appendix B.2). The
basic idea in designing a coset code is to select carefully N -dimensional sequences that are separated by
a large minimum distance. The signal constellation contains 2k+rG subsets (cosets) of the constellation
that each contain 2b−k points. A good trellis code is designed by carefully selecting sequences of cosets
that will lead to the desired increase in separation. The vector sequence xm is converted by modulation
to a continuous-time waveform according to the techniques discussed in Chapter 1.

At any time m, there are b input bits to the encoder, of which k are input to a conventional binary
encoder (convolutional or block), which produces n = k+ rG output bits, with rG specifying the number

of redundant bits produced by the encoder (rG = n−k in Sections ?? and ??). The quantity r̄G
∆
= rG/N

is called the normalized redundancy of the convolutional encoder in the coset-code encoder. The

quantity k̄G

∆
= k/N is called the informativity of the convolutional encoder in the coset-code encoder.

The k+ rG output bits of the binary encoder specify one of 2k+rG disjoint subsets (or cosets) into which
the signal constellation has been divided. This subset selection is performed by the coset select. The
current output signal point xm at time m is selected by the signal select from the 2b−k remaining points
in that coset that is currently selected by the coset select. The set of all possible sequences that can be
generated by the coset encoder is called the coset code and is denoted by C.

In Figure B.4, the sublattice Λ′ is presumed to partition the lattice Λ, written Λ|Λ′, into 2k+rG cosets
of Λ′, where each coset has all of its points contained within the original lattice Λ. Such a partitioning
always accompanies the specification of a coset code.

Definition B.3.1 (Coset Partitioning Λ|Λ′) A coset partitioning is a partition of the
Lattice Λ into |Λ|Λ′| (called the “order” of the partition) cosets of a sublattice Λ′ such that
each point in the original lattice Λ is contained in one, and only one, coset of the sublattice
Λ′.

The coset select in Figure B.4 then accepts the k+rG bits fromG as input and outputs a corresponding
index specifying one of the cosets of Λ′ in the coset partitioning Λ|Λ′. There are 2b+rG constellation
points chosen from the lattice Λ, and each is in one of the 2k+rG cosets. There are an equal number,
2b−k, of constellation points in each coset. The signal select accepts b−k uncoded input bits and selects
which of the 2b−k points in the coset of Λ′ specified by the coset select that will be transmitted as the
modulated vector xm.

x	
m	

Binary	 Encoder	
	 G	

k	 bits	

b-‐k	 bits	

Coset	 Select	
	 (CS)	

Signal	 Select	
	 (SS)	

	 	 	 	 	 	 	 	 	 	 	 	

k	 +	 r	 G	
bits	

	 (sequence	 in	 C)	

 one	 of	 	 2	 k	 +	
r	 G	 	 cosets	 of	 	 Λ	
'	

 Λ	
 Λ	
'	

 one	 of	 	 2	
b	 +	
r	 G	 	 points	 in	 	 Λ	

Figure B.4: The coset-code encoder

519

If the encoder G is a convolutional encoder, then the set of all possible transmitted sequences {x(D)}
is a Trellis Code, and if G is a block encoder, the set of N -dimensional vectors is a Lattice Code.
So, both trellis codes and lattice codes are coset codes.

B.3.1 Gain of Coset Codes

There are several important concepts in evaluating the performance of a coset code, but the gain is
initially the most important.

The fundamental gain will be taken in Volume II to always be with respect to a uncoded system, x̃,
that uses points on the N -dimensional integer lattice (denoted ZN). It is easy (and often harmless, but
not always) to forget the difference between Vx and V2/N (Λ). Vx is the volume of the constellation and
is equal to the number of points in the constellation times V2/N (Λx). For coding gain calculations where
the two compared systems have the same number of points, this difference is inconsequential. However,
in trellis codes, the two are different because the coded system often has extra redundant points in
its constellation. For the uncoded reference ZN lattice, V(ZN) = 1 and dmin(ZN) = 1, so that the
fundamental gain of a coset code reduces to

γf =

d2

min
(x)

V2/N

x
d2

min
(x̃)

Ṽx
2/N

=

d2

min
(x)

22(b̄+r̄G)V2/N (Λ)

d2

min
(x̃)

22b̄·V2/N (Λ)

=

d2

min
(C)

22r̄G ·V2/N (Λ)

1
1

=
d2
min(C)

V(Λ)2/N22r̄G
(B.97)

The quantity r̄G = rG
N is the normalized redundancy of the encoder G. The gain γf in dB is

γf = 10 · log10

(
d2
min(C)

V(Λ)2/N22r̄G

)
(B.98)

= 20 log10

(
dmin(C)

V(Λ)1/N2r̄G

)
(B.99)

The redundancy of the overall coset code requires the concept of the redundancy of the original
lattice Λ.

Definition B.3.2 (Redundancy of a Lattice) The redundancy of a lattice is defined
by rΛ such that

V(Λ) = 2rΛ = 2Nr̄Λ , (B.100)

or rΛ = log2 (V(Λ)) bits per symbol. The quantity r̄Λ = rΛ/N is called the normalized
redundancy of the lattice, which is measured in bits/dimension.

Then, the fundamental coding gain of a coset code is

γf =
d2
min(C)

22(r̄G+r̄Λ)
=
d2
min(C)

22r̄C
(B.101)

where
r̄C = r̄G + r̄Λ . (B.102)

Equation (B.101) is often used as a measure of performance in evaluating the performance of a given
trellis code. Good coset codes typically have 3 dB ≤ γf ≤ 6 dB.

Shaping gain is also important in evaluating trellis codes, but is really a function of the shape of the
constellation used rather than the spacing of sequences of lattice points. The shaping gain is defined as
(again comparing against a zero-mean translate of ZN lattice)

γs =
V2/N (Λ) · 22r̄G

Ē(Λ)
/

1

(22b̄ − 1)/12
=

22r̄C

12Ē
(22b̄ − 1) , (B.103)

520

Λ	
 Λ	
'	

Λ	
'	 =	 2	

Λ	
=	 8	

Λ	
|	 Λ	
'	 =	 4	

0	

1	

2	

6	

4	

7	

3	 5	

0	

4	

1	 2	 3	 -‐1	 -‐2	 -‐3	

1	

2	

3	

-‐1	

-‐2	

-‐3	

Figure B.5: Partitioning (a coset of) the D2 Lattice

where Ē(C) is the energy per dimension required for the coset code. Using the so-called “continuous
approximation” (which holds accurately for b̄ ≥ 3), the shaping gain is often approximated by

γs ≈
22r̄C · 22b̄

12Ē(Λ)
. (B.104)

This can also be written in dB as

γs ≈ 10 log10

(
V2/N (Λ)22(b̄+r̄G)

12Ē(Λ)

)
(B.105)

= 10 log10

(
22(b̄+r̄C)

12Ē(Λ)

)
(B.106)

This shaping gain has a theoretical maximum of 1.53dB - the best known shaping methods achieve about
1.1dB (see Section ??).

EXAMPLE B.3.1 (Ungerboeck’s Rate 1/2 3 dB Trellis Code) In Figure B.5, the 8AMPM
(or 8CR) constellation is subset of a (possibly scaled and translated) version of what is known
as the Λ = D2 Lattice that contains |Λ| = 8 points. The average energy per symbol for this
system is E = 10 or Ē = 5. The (translated) sublattice Λ′ has a coset, Λ0 that contains
|Λ0| = 2 points, so that there are |Λ|Λ′| = 4 cosets of Λ′ in Λ; they are Λ0 = {0, 4},
Λ1 = {1, 5}, Λ2 = {2, 6}, and Λ3 = {3, 7}. These 4 cosets are selected by the two bit output
v(D) of a rate 1/2 convolutional encoder with generator:

G(D) =
[
1 +D2 D

]
. (B.107)

The corresponding trellis and trellis encoder are shown in Figures B.6 and B.7, respectively.
The convolutional encoder, G, has rate r = 1/2, but the overall coset-code has b̄ = 2
bits/2dimensions = 1 bit/dimension. The input bit u1,k passes through G, where the two

521

00	

01	

10	

11	

Λ	

0	
	 	 Λ	

2	

Λ	

1	
	 	 Λ	

3	

Λ	

2	
	 	 Λ	

0	

Λ	

3	
	 	 Λ	

1	

Figure B.6: Trellis for 4-state rate 1/2 Ungerboeck Code

x	 m	
b-‐k	 bits	

Coset	 Select	
	 (CS)	

Signal	 Select	
	 (SS)	

	 	 	 	 	 	 	 	 	 	 	 	

⊕	
D	 D	

G	 (D)	 	 	 =	 	 	 1	 +	 D	 2	 	 	 	 	 	 	 D	
 one	 of	 	 4	 	 cosets	 of	 	 2	 Z	 2	

one	 of	 	 2	 b	 -‐	 1	 	 points	 in	 selected	 	
coset	 of	 	 2	 Z	 2	

 Z	
2	 2	 Z	 2	

Figure B.7: Encoder for 4-state rate 1/2 Ungerboeck Code

522

output bits select the index of the desired coset Λ0, Λ1, Λ2, or Λ3. The minimum distance
between the points in any of these cosets is dmin(Λ′) = 2dmin(Λ) = 4

√
2. This distance

is also the distance between the parallel transitions that are tacit in Figure B.6. Figure
B.6 inherently illustrates that any two (non-parallel) paths that start and terminate in the
same pair of states, must have a distance that is d′ =

√
16 + 8 + 16, which is always greater

than 4
√

2, so that the parallel transition distance is the minimum distance for this code.
This parallel-transition distance (normalized to square-root energy and ignoring constellation
shape effects) is

√
2 better than the distance corresponding to no extra bit or just transmitting

(uncoded) 4 QAM. More precisely, the coding gain is

γ =

(
d2
min/Exp

)
coded(

d2
min/Exp

)
uncoded

(B.108)

This expression evaluates to (for comparison against 4 QAM, which is also ZN and exact for
γf and γs calculations)

γ =
16·2
10
1

1/2

= 1.6 = 2 dB . (B.109)

The fundamental coding gain is (realizing that r̄C = r̄Λ + r̄G = 1.5 + .5 = 2)

γf =

(
d2
min

22r̄C

)
=

32

22·2 = 2 (3 dB) . (B.110)

Thus, the shaping gain is then γs = γ − γf = 2− 3 = −1 dB, which verifies according to

γs =
22·2

12 · 5
(
22 − 1

)
=

4

5
= -1 dB . (B.111)

This coset code of Figure B.7 can be extended easily to the case where b = 3, by using
the constellation in Figure B.8. In this case, r̄C = .5 = r̄Λ + r̄G = 0 + .5, b̄ = 1.5, and
Ē = 1.25. This constellation contains 16 points from the scaled and translated Z2 Lattice.
The sublattice and its 4 cosets are illustrated by the labels 0,1,2, and 3 in Figure B.8. This
coset code uses a circuit almost identical to that in Figure B.7, except that two bits enter
the Signal Select to specify which of the 4 points in the selected coset will be the modulated
signal.

The minimum distance of the coded signal is still twice the distance between points in Λ.
The fundamental coding gain is

γf =
4

22·.5 = 2 (3 dB). (B.112)

The fundamental gain γf will remain constant at 3 dB if b further increases in the same
manner; however the shaping gain γs will vary slightly. The shaping gain in this case is

γs =
22·.5

12 · (5/4)

(
23 − 1

)
=

14

15
= (-.3 dB). (B.113)

The coding gain of this code with respect to 8 CR is (16/5)/(8/5)= 3dB. This code class
is known as Ungerboeck’s 4-state Rate 1/2 Trellis Code, and is discussed further in Section
B.4.

B.3.2 Mapping By Set Partitioning

The example of the last section suggests that the basic partitioning of the signal constellation Λ|Λ′ can
be extended to larger values of b. The general determination of Λ′, given Λ, is called mapping-by-set-
partitioning. Mapping-by-set-partitioning is instrumental to the development and understanding of
coset codes.

523

Λ	
 Λ	
'	

Λ	
|	 Λ	
'	 =	 4	

0	 1	

2	 3	

0	

0	

0	

0	

2	

2	 2	

1	

1	 1	

3	

3	

3	

0	

0	

0	

Λ	
=	 1	 6	

Λ	
'	 =	 4	

d=1

Figure B.8: Partitioning 16 QAM

B.3.2.1 Partitioning of the Integer Lattice

Example B.3.1 partitioned the 16QAM constellation used to transmit 3 bits of information per symbol.
The basic idea is to divide or to partition the original constellation into two equal size parts, which both
have 3 dB more distance between points than the original lattice. Figure B.9 repeats the partitioning
of 16 QAM each of the partitions to generate 4 sublattices with distance 6dB better than the original
Lattice.

The cosets are labeled according to an Ungerboeck Labeling:

Definition B.3.3 (Ungerboeck Labeling in two dimensions) An Ungerboeck labeling
for a Coset Code C uses the LSB, v0, of the encoder G output to specify which of the first
2 partitions (B0, v0 = 0 or B1 v0 = 1) contains the selected coset of the sublattice Λ′,
and then uses v1 to specify which of the next level partitions (C0,C2,C1,C3) contains the
selected coset of the sublattice, and finally when necessary, v2 is used to select which of the
3rd level partitions is the selected coset of the sublattice. This last level contains 8 cosets,
D0,D4,D2,D6,D1,D5,D3, and D7.

The remaining bits, vk+r, ..., vb+r−1 are used to select the point within the selected coset. The parti-
tioning process can be continued for larger constellations, but is not of practical use for two-dimensional
codes.

In practice, mapping by set partitioning is often used for N = 1, N = 2, N = 4, and N = 8.
One-dimensional partitioning halves a PAM constellation into sets of “every other point,” realizing a
6dB increase in intra-partition distance for each such halving. In 4 and 8 dimensions, which will be
considered later, the distance increase is (on the average) 1.5 dB per partition and .75 dB per partition,
respectively.

B.3.2.2 Partition Trees and Towers

Forney’s Partition trees and Towers are alternative more mathematical descriptions of mapping by
set partitioning and the Ungerboeck Labeling process.

524

v	 0	 =	
0	 v	 0	 =	
1	

v	 1	 =	
1	 v	 1	 =	
1	 v	 1	 =	
0	
v	 1	 =	
0	

B	 0	 B	 1	

C	 0	 C	 2	 C	 1	 C	 3	

A	 0	 d	

2	 ⋅	
d	

2	 ⋅	
d	

Figure B.9: Illustration of Mapping by Set Partitioning for 16QAM Constellation

Λ = Λ(0)

Λ(1) Λ
(1)
+ g

0

Λ
(2)
+ g

0
Λ

(2)
+ g

0
+ g

1Λ
(2)
+ g

1
Λ

(2)

Figure B.10: Partition tree.

525

Figure B.11: Partition tower.

The partition tree is shown in Figure B.10. Each bit of the convolutional encoder (G) output is used
to delineate one of two cosets of the parent lattice at each stage in the tree. The constant vector that is
added to one of the partitions to get the other is called a coset leader, and is mathematically denoted
as gi. The specification of a vector point that represents any coset in the ith stage of the tree is

x = Λ′ +

k+rG−1∑
i=0

vigi = Λ′ + v

gk+rG−1

...
g1

g0

 = Λ′ + vG , (B.114)

where G is a “generator” for the coset code. Usually in practice, a constant offset a is added to all x so
that 0 (a member of all lattices) is not in the constellation, and the constellation has zero mean. The
final b− k bits will specify an offset from x that will generate our final modulation symbol vector. The
set of all possible binary combinations of the vectors gi is often denoted

[Λ|Λ′] ∆
= {vG} (B.115)

Thus,
Λ = Λ′ + [Λ|Λ′] , (B.116)

symbolically, to abbreviate that every point in Λ can be (uniquely) decomposed as the sum of a point
in Λ′ and one of the “coset leaders” in the set [Λ|Λ′], or recursively

Λ(i) = Λ(i+1) +
[
Λ(i)|Λ(i+1)

]
. (B.117)

There is thus a chain rule
Λ(0) = Λ(2) +

[
Λ(1)|Λ(2)

]
+
[
Λ(0)|Λ(1)

]
(B.118)

or [
Λ(0)|Λ(2)

]
=
[
Λ(0)|Λ(1)

]
+
[
Λ(1)|Λ(2)

]
(B.119)

where
[
Λ(i)|Λ(i+1)

]
= {0, gi} and

[
Λ(0)|Λ(2)

]
= {0, g0, g1, g0 + g1}. This concept is probably most

compactly described by the partition tower of Forney, which is illustrated in Figure B.11.
The partition chain is also compactly denoted by

Λ(0)

∣∣Λ(1)

∣∣Λ(2)

∣∣Λ(3)

∣∣ (B.120)

526

EXAMPLE B.3.2 (Two-dimensional integer lattice partitioning) The initial lattice
Λ(0) is Z2. Partitioning selects “every other” point from this lattice to form the lattice D2,
which has only those points in Z2 that have even squared norms (see Figures B.9 and B.5).
Mathematically, this partitioning can be written by using the rotation matrix

R2
∆
=

[
1 1
1 −1

]
(B.121)

as
D2 = R2Z

2 , (B.122)

where the multiplication in (B.122) symbolically denotes taking each point in Z2 and multi-
plying by the rotation matrix R2 to create a new set of points that will also be a lattice. D2

is also a sublattice of Z2 and therefore partitions Z2 into two subsets. Thus in partitioning
notation:

Z2 |D2 . (B.123)

The row vector that can be added to D2 to get the other coset is g0 = [0 1]. So, Z2 |D2

with coset leaders
[
Z2 |D2

]
= {[0 0], [0 1]}. D2 decomposes into two sublattices by again

multiplying by the rotation operator R2

2Z2 = R2D2 . (B.124)

Points in 2Z2 have squared norms that are multiples of 4. Then, D2

∣∣2Z2 with
[
D2

∣∣2Z2
]

=

{[0 0], [1 1]}. Thus,
[
Z2
∣∣2Z2

]
= {[0 0], [0 1], [1 0] [1 1]}. The generator for a coset code

with convolutional codewords [v1(D) v0(D)] as input is then

G =

[
1 1
0 1

]
. (B.125)

Partitioning continues by successive multiplication by R2: Z2 |D2| 2Z2 |2D2| 4Z2....

527

B.4 One- and Two-dimensional Trellis Codes

Ungerboeck’s two most famous codes are in wide use and used for illustrative purposes in this section.

B.4.1 Rate 1/2 Code

The earlier 4-state rate 1/2 code discussed in Section B.3 can be generalized as shown in Figure B.12.
The encoder matrix G = [1 +D2 D] can be equivalently written as a systematic encoder

Gsys =

[
1

D

1 +D2

]
, (B.126)

which is shown in Figure B.12. The parity matrix H appears in Figure B.12 because most trellis codes
are more compactly expressed in terms of H. In this code rG = 1 and 2b+1 points are taken from the
Lattice coset Z2 +

[
1
2

1
2

]
to form the constellation Λ, while the sublattice that is used to partition Λ is

Λ′ = 2Z2, upon which there are 2b−1 constellation points, and there are 4 cosets of Λ′ in Λ, |Λ/Λ′| = 4.
The fundamental gain remains at

γf =

(
d2
min(2Z2)

V(Z2) · 2

)
/

(
d2
min(Z2)

V(Z2)

)
=

4

2
/

1

1
= 2 = 3 dB . (B.127)

Shaping gain is again a function of the constellation shape, and is not considered to be part of the
fundamental gain of any code. For any number of input bits, b, the structure of the code remains mainly
the same, with only the number of points within the cosets of Λ′ = 2Z2 increasing with 2b.

The partition chain for this particular code is often written Z2|D2|2Z2.

B.4.2 A simple rate 2/3 Trellis Code

In the rate 2/3 code of interest, the encoder G will be a rate 2/3 encoder. The objective is to increase
fundamental gain beyond 3dB, which was the parallel transition distance in the rate 1/2 code of Section
B.3. Higher gain necessitates constellation partitioning by one additional level/step to ensure that the
parallel transition distance will now be 6dB, as in Figure B.13. Then, the minimum distance will usually
occur between two longer length sequences through the trellis, instead of between parallel transitions.
The mapping-by-set-partitioning principle of the Section B.3.2 extends one more level to the chain
Z2|D2|2Z2|2D2, which is illustrated in detail in Figure B.13 for a 16 SQ QAM constellation. Figure
B.14 shows a trellis for the successive coset selection from D-level sets in Figure ?? and also illustrates
an example of the worst-case path for computation of dmin.

The worst case path has distance

dmin =
√

2 + 1 + 2 =
√

5 <
√

8 . (B.128)

The fundamental gain is thus

γf =
d2
min

22r̄C
=

5

22(1/2)
= 2.5 = 4 dB . (B.129)

Essentially, this rate 2/3 code with 8 states, has an extra 1 dB of coding gain. It is possible to yet
further increase the gain to 6dB by using a trellis with more states, as Section B.4.3 will show.

Recognizing that this trellis is the same that was analyzed in Sections ?? and ?? or equivalently
reading the generator from the circuit diagram in Figure B.15,

G(D) =

[
1 0 D2

1+D3

0 1 D
1+D3

]
(B.130)

Since this is a systematic realization,

GsysH
′ = 0 =

[
I hT

] [hT

I

]
, (B.131)

528

x	 m	
b-‐k	 bits	

Coset	 Select	
	 (CS)	

Signal	 Select	
	 (SS)	

	 	 	 	 	 	 	 	 	 	 	 	

⊕	
D	 D	

G	 (D)	 	 	 =	 	 	 1	 +	 D	 2	 	 	 	 	 	 	 D	
 one	 of	 	 4	 	 cosets	 of	 	 2	 Z	 2	

one	 of	 	 2	 b	 -‐	 1	 	 points	 in	 selected	 	
coset	 of	 	 2	 Z	 2	

 Z	
2	 2	 Z	 2	

Figure B.12: Ungerboeck’s 4-state rate 1/2 Trellis Code

v	 0	 =	
0	 v	 0	 =	
1	

v	 1	 =	
1	 v	 1	 =	
1	 v	 1	 =	
0	
v	 1	 =	
0	

B0	 B1	

C0	 C2	 C1	 C3	

A0	 d	

2	 ⋅	
d	

2	 ⋅	
d	

D0	 D4	 D2	 D6	 D1	 D5	 D3	 D7	

v	 2	 =	
0	 v	 2	 =	
1	 v	 2	 =	
0	 v	 2	 =	
1	 v	 2	 =	
0	 v	 2	 =	
1	 v	 2	 =	
0	 v	 2	 =	
1	

2	 2	 ⋅	
d	

Figure B.13: D-level partitioning of 16 QAM.

529

0	 2	 4	 6	

1	 3	 5	 7	

2	 0	 6	 4	

3	 1	 7	 5	

4	 6	 0	 2	

5	 7	 1	 3	

6	 4	 2	 0	

7	 5	 3	 1	

0	 0	 0	

0	 0	 1	

0	 1	 0	

0	 1	 1	

1	 0	 1	

1	 1	 0	

1	 0	 0	

1	 1	 1	

D	 	 	 I	 n	 d	 e	 x	 	 	 	 	 f	 o	 r	 	 	 c	 o	 s	 e	 t	 s	 	 	 o	 f	 	 	 2	 D	 2	 d	 m	 i	 n	 =	
 2	 +	
1	 +	
2	 =	
 5	 <	
2	 2	

2d = 2 + 1 + 2

Figure B.14: Trellis for 8-state rate 2/3 Trellis Code (γf = 3 dB)

x	 m	
S	 i	 g	 n	 a	 l	 	 	 S	 e	 l	 e	 c	 t	 	

	 (S	 S)	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

⊕	
D	 D	

3	 -‐	 b	 i	 t	 	 	 c	 o	 s	 e	 t	 	 	 s	 e	 l	 e	 c	 t	

2	 -‐	 d	 i	 m	 e	 n	 s	 i	 o	 n	 a	 l	 	
	 m	 o	 d	 u	 l	 a	 t	 i	 o	 n	 	 	 v	 e	 c	 t	 o	 r	

D	 ⊕	

 u	 1	

 u	 2	

 u	 3	

 u	 b	

 v	 0	

 v	 1	

 v	 2	

 Z	
2	 D	 2	

 D	 2	 2	 Z	
2	

 2	 Z	
2	 2	 D	 2	

v	 3	

v	 b	

H	 (D)	 =	
 D	 2	 D	 1	 +	
D	 3	 [
]	

Figure B.15: Encoder for 8-state rate 2/3 trellis code (γf = 4 dB).

530

so that the last n− k = 1 column(s) are the rows of the parity matrix, or

H(D) = [h 1] . (B.132)

In the case of the code in question (after clearing the denominator),

H(D) =
[
D2 D 1 +D3

]
. (B.133)

With trellis codes of rate k/k + 1, the extra bit is named v0 instead of vk+1. A variant of the code in
Figure B.15 is used in the voiceband modem standards v.32 and v.32bis.

B.4.3 Code Design in One and Two Dimensions

Previous sections specifically studied two 2-dimensional trellis codes in detail: the first being a rate
1/2 4-state code with fundamental gain γf = 3 dB, and the second being a rate 2/3 8-state code with
γf = 4 dB. There are many yet more powerful (higher γf) codes that have been mainly tabulated by
Ungerboeck and Forney2 that this subsection lists again shortly. There are also codes designed for the
one-dimensional channel, which appear next.

B.4.3.1 One-Dimensional Trellis Codes

For one dimensional codes to have up to 6 dB of fundamental gain, the designer need only partition
twice, so that Λ′ = Λ(2) to realize a minimum separation between any two parallel transitions that
is 6 dB higher than uncoded one-dimensional PAM. Stated more precisely, the partition chain for the
one-dimensional trellis codes is, with Λ = Z, Z|2Z|4Z. The corresponding minimum distances between
points are dmin(Z) = 1, dmin(2Z) = 2, and dmin(4Z) = 4, respectively, and rG = 1 for the one-
dimensional codes in this chapter. Since rG = 1 implies a doubling of the constellation size |Λ|, with
respect to uncoded transmission, the maximum fundamental gain will be limited to

γf ≤ 16/(22·1) = 6 dB , (B.134)

because the parallel transition separation is never more than d2 = 16. Since G(D) must then be a rate
1/2 code, then G(D) and H(D) are both 1 × 2 matrices. In one-dimensional codes, the actual signal
set Λ is offset to eliminate any nonzero mean, and has equal numbers of positive and negative points, so
that Λ→ Z + 1

2 . d2
min for any such code must be an integer because it is a sum of squared integers.

Table B.1 lists most of the best-known one-dimensional codes (and was essentially copied from For-
ney’s 1988 Coset Codes I paper). Recall that N̄e = Ne is the normalized number of nearest neigh-
bors. The quantities N̄1 and N̄2 are the numbers of next-to-nearest neighbors (with squared distance
d2 = d2

min + 1), and next-to-next-to-nearest neighbors (with squared distance d2
min + 2). The effective

gain γ̃f is the fundamental gain of the code, reduced by .2dB for each factor of 2 increase in nearest
neighbor over the minimum of 2 nearest neighbors per dimension, which occurs for uncoded PAM trans-
mission. N̄D is a measure of decoder complexity that will be described in Section B.4.4. An example of
the use of these tables appears in Subsection B.4.3.4.

For more complete understanding of the entries in the one-dimensional coding tables, Table B.2
summarizes some partitioning results in one-dimension in Table B.2. The subscript on a partition refers
to the dimension of the underlying coset code, while the superscript refers to the coset index with an
Ungerboeck labeling. The distances in the table correspond to

A0
1 = Z (B.135)

B0
1 = 2Z (B.136)

B1
1 = 2Z + 1 (B.137)

C0
1 = 4Z (B.138)

C1
1 = 4Z + 1 (B.139)

C2
1 = 4Z + 2 (B.140)

C3
1 = 4Z + 3 . (B.141)

2The author would like to acknowledge help from Nyles Heise of IBM Almaden Research who updated and corrected
some of these tables - Heise’s corrections on the tables of Unberboeck and Forney are included here.

531

2ν h1 h0 d2
min γf (dB) N̄e N̄1 N̄2 N̄3 N̄4 γ̃f N̄D

4 2 5 9 2.25 3.52 4 8 16 32 64 3.32 12
8 04 13 10 2.50 3.98 4 8 16 40 72 3.78 24

16 04 23 11 2.75 4.39 8 8 16 48 80 3.99 48
16 10 23 11 2.75 4.39 4 8 24 48 80 4.19 48
32 10 45 13 3.25 5.12 12 28 56 126 236 4.60 96
64 024 103 14 3.50 5.44 36 0 90 0 420 4.61 192
64 054 161 14 3.50 5.44 8 32 66 84 236 4.94 192

128 126 235 16 4.00 6.02 66 0 256 0 1060 5.01 384
128 160 267 15 3.75 5.74 8 34 100 164 344 5.16 384
128 124 207 14 3.50 5.44 4 8 14 56 136 5.24 384
256 362 515 16 4.00 6.02 2 32 80 132 268 5.47 768
256 370 515 15 3.75 5.74 4 6 40 68 140 5.42 768
512 0342 1017 16 4.00 6.02 2 0 56 0 332 5.51 1536

Table B.1: One-Dimensional Trellis Codes and Parameters
(Underlined quantities correspond to cases where worst-case performance is caused by large next-to-nearest
neighbor counts.)

A0
1

dmin w.r.t. A0
1 1

Ne w.r.t. A0
1 2

B0
1 B1

1

dmin w.r.t. B0
1 2 1

Ne w.r.t. B0
1 2 2

C0
1 C2

1 C1
1 C3

1

dmin w.r.t. C0
1 4 2 1 1

Ne w.r.t. C0
1 2 2 1 1

Table B.2: One-Dimensional Partitioning

532

2ν h2 h1 h0 d2
min γf (dB) N̄e N̄1 N̄2 N̄3 N̄4 γ̃f N̄D

4 - 2 5 4 2 3.01 2 16 64 256 1024 3.01 8
8 04 02 11 5 2.5 3.98 8 36 160 714 3144 3.58 32

16 16 04 23 6 3 4.77 28 80 410 1952 8616 4.01 60
32 10 06 41 6 3 4.77 8 52 202 984 4712 4.37 116
32 34 16 45 6 3 4.77 4 64 202 800 4848 4.44 116
64 064 016 101 7 3.5 5.44 28 130 504 2484 12236 4.68 228
64 060 004 143 7 3.5 5.44 24 146 592 2480 12264 4.72 228
64 036 052 115 7 3.5 5.44 20 126 496 2204 10756 4.78 228

128 042 014 203 8 4 6.02 172 0 2950 0 73492 4.74 451
128 056 150 223 8 4 6.02 86 312 1284 6028 29320 4.94 451
128 024 100 245 7 3.5 5.44 4 94 484 1684 8200 4.91 451
128 164 142 263 7 3.5 5.44 4 66 376 1292 6624 5.01 451
256 304 056 401 8 4 6.02 22 152 658 2816 13926 5.23 900
256 370 272 417 8 4 6.02 18 154 612 2736 13182 5.24 900
256 274 162 401 7 3.5 5.44 2 32 124 522 2732 5.22 900
512 0510 0346 1001 8 4 6.02 2 64 350 1530 6768 5.33 1796

Table B.3: Two-Dimensional Trellis Codes and Parameters
(Underlined quantities correspond to cases where worst-case performance is caused by large next-to-nearest
neighbor counts).

B.4.3.2 Two-Dimensional Codes

Two-dimensional codes use 3-level partitioning3, so that Λ′ = Λ(3) to realize a minimum separation
between any two parallel transitions that is 6dB higher than uncoded two-dimensional QAM. Stated
more precisely, the partition chain for the two-dimensional trellis codes of interest is, with Λ = Z2,
Z2|D2|2Z2|2D2. The corresponding minimum distances between points are dmin(Z2) = 1, dmin(D2) =√

2, dmin(2Z2) = 2, and dmin(2D2) = 2
√

2 respectively, and rG = 1 for the two-dimensional codes
presented here. Since rG = 1 implies a doubling of the two-dimensional constellation size |Λ|, with
respect to uncoded transmission, the maximum fundamental gain will be limited to

γf ≤ 8/2 = 6dB . (B.142)

Since G(D) must then be a rate 2/3 code, then G(D) is a 2×3 matrix and H(D) is a 1×3 matrix, making
H(D) the more compact description. In the two-dimensional codes, the actual signal set Λ is offset to
eliminate any nonzero mean, and has equal numbers of points in each quadrant, so that Λ→ Z2 +[1

2 ,
1
2].

d2
min for any code must be an integer because it is a sum of integers.

Table B.3 lists most of the best-known two-dimensional codes (and was also essentially copied from
Forney’s Coset Codes I paper). Recall that N̄e is the normalized number of nearest neighbors. The
quantities N̄1 and N̄2 mean the same thing they did for the one-dimensional codes, allowing comparisons
on a per-dimensional basis between one and two dimensional codes.

For more complete understanding of the entries in the two-dimensional coding tables, Table B.4
summarizes some partitioning results in two-dimensions. The subscript on a partition refers to the
dimension of the underlying coset code, while the superscript refers to the coset index with an Ungerboeck

3With the only exception being the 4-state 3dB code that was already studied

533

A0
2

dmin w.r.t. A0
2 1

Ne w.r.t. A0
2 4

B0
2 B1

2

dmin w.r.t. B0
2

√
2 1

Ne w.r.t. B0
2 4 4

C0
2 C2

2 C1
2 C3

2

dmin w.r.t. C0
2 2

√
2 1 1

Ne w.r.t. C0
2 4 4 2 2

D0
2 D2

2 D1
2 D3

2

dmin w.r.t. D0
2

√
8
√

2 1 1
Ne w.r.t. D0

2 4 2 1 1

D4
2 D6

2 D5
2 D7

2

dmin w.r.t. D0
2 2

√
2 1 1

Ne w.r.t. D0
2 4 2 1 1

Table B.4: Two-Dimensional Partitioning

labeling. The distances in the table correspond to

A0
2 = Z2 (B.143)

B0
2 = RZ2 (B.144)

B1
2 = RZ2 + [1, 0] (B.145)

C0
2 = 2Z2 (B.146)

C1
2 = 2Z2 + [1, 0] (B.147)

C2
2 = 2Z2 + [1, 1] (B.148)

C3
2 = 2Z2 + [0, 1] = 2Z2 + [2, 1] (B.149)

D0
2 = 2RZ2 (B.150)

D1
2 = 2RZ2 + [1, 0] (B.151)

D2
2 = 2RZ2 + [1,−1] (B.152)

D3
2 = 2RZ2 + [2,−1] (B.153)

D4
2 = 2RZ2 + [0,−2] (B.154)

D5
2 = 2RZ2 + [1,−2] (B.155)

D6
2 = 2RZ2 + [1,−3] (B.156)

D7
2 = 2RZ2 + [0, 1] = 2RZ2 + [2,−3] . (B.157)

B.4.3.3 Phase-Shift Keying Codes

Although, PSK codes fall properly outside the domain of coset codes as considered here - gains can be
computed and codes found for two cases of most practical interest. Namely 4PSK/8PSK systems and
8PSK/16PSK systems. The corresponding code tables are illustrated in Tables B.5 and B.6. Partitioning
proceeds as in one-dimension, except that dimension is wrapped around a circle of circumference 2b+1.

All PSK trellis codes have their gain specified with respect to the uncoded circular constellation -
that is with respect to QPSK for b = 2 or to 8PSK for b = 3.

534

2ν h2 h1 h0 γ (dB) N̄e N̄1 N̄2 γ̃
4 - 2 5 2 3.01 .5 ? ? 3.41
8 04 02 11 2.291 3.60 2 ? ? 3.80

16 16 04 23 2.588 4.13 1.15 ? ? 4.29
32 34 16 45 2.877 4.59 2 ? ? 4.59
64 066 030 103 3.170 5.01 2.5 ? ? 4.95

128 122 054 277 3.289 5.17 .25 ? ? 5.67?
256 130 072 435 3.758 5.75 .75 ? ? 6.03?

Table B.5: 4PSK/8PSK Trellis Codes and Parameters
(Effective gains are suspect, as next-to-nearest neighbor counts are not presently available.)

2ν h2 h1 h0 γ (dB) N̄e N̄1 N̄2 γ̃
4 – 2 5 2.259 3.54 2 ? ? 3.54
8 – 04 13 2.518 4.01 2 ? ? 4.01

16 – 04 23 2.780 4.44 4 ? ? 4.24
32 – 10 45 3.258 5.13 4 ? ? 4.93
64 – 024 103 3.412 5.33 1 ? ? 5.53?

128 – 024 203 3.412 5.33 1 ? ? 5.53?
256 374 176 427 3.556 5.51 4 ? ? 5.31?

Table B.6: 8PSK/16PSK Trellis Codes and Parameters
Effective gains are suspect, as next-to-nearest neighbor counts are not presently available.

B.4.3.4 Design Examples

This subsection presents two design examples to illustrate the use of Tables B.1 and B.3.

EXAMPLE B.4.1 (32CR Improved by 4.5dB) A data transmission system transmits
5 bits/2D-symbol over an AWGN channel with channel SNR=19.5dB. This SNR is only
sufficient, using 32CR QAM, to achieve a probability of error

Pe = 4

(
1− 1√

2 · 32

)
Q

[√
3SNR

(31/32)32− 1

]
≈ 4Q(2.985) ≈ .0016 , (B.158)

which is (usually) insufficient for reliable data transmission. An error rate of approximately
10−6 is desired. To get this improved error rate, the applied code needs to increase the
SNR in (B.158) by approximately 4.5dB. Before using the tables, the designer computes the
shaping gain (or loss) from doubling the signal set size from 32CR to 64SQ (presuming no
more clever signal constellation with 64 points is desirable for this example) as

γs(32CR) = 10 log10

(
1 · (25 − 1)

12 · (5/2)

)
= .14dB (B.159)

and

γs(64QAM) = 10 log10

(
2 · (25 − 1)

12 · (10.5/2)

)
= −0.07dB , (B.160)

thus the design loses .21dB in going to the 64SQ QAM constellation for trellis coding with
respect to the 32CR QAM. This is because 32CR QAM is closer to a circular boundary than
is 64 SQ QAM.

Table B.3 contains two 64-state codes that achieve an effective coding gain of at least 4.72dB.
Since the 2 satisfactory codes listed have the same complexity, a better choice is the last,
which has effective gain 4.78dB. Taking the shaping gain penalty gain, the full gain of this

535

⊕	
D D

u 1

x m
S	 i	 g	 n	 a	 l	 	 	 S	 e	 l	 e	 c	 t	 	

	 (S	 S)	
2	 -‐	 d	 i	 m	 e	 n	 s	 i	 o	 n	 a	 l	 	

	 m	 o	 d	 u	 l	 a	 t	 i	 o	 n	 	 	 v	 e	 c	 t	 o	 r	

u 2

u 3

v 0

v 1

D ⊕	

v 2

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Z 2 |	 D 2	
D 2 |	 2 Z 2

2 Z 2 |	 2 D 2

D D ⊕	
 ⊕	
 D ⊕	
 ⊕	
 ⊕	

u 4

u 5
v 5

v 4

v 3

H = D 4 +D3 +D2 +D D5 +D3 +D D6 +D3 +D2 +1!
"#

$
%&

Figure B.16: Circuit for 64QAM code with 4.57dB gain.

code with respect to 32CR is 4.78-.21 = 4.57 dB, and the error probability is then

Pe ≈ 4Q

[√
3(SNR + 4.57dB)

(31/32)32− 1

]
≈ 4Q(5.05) ≈ 9× 10−7 , (B.161)

which is below the desired 10−6. From the table, h2 = 036, h1 = 052, and h0 = 115, so that

H =
[
D4 +D3 +D2 +D D5 +D3 +D D6 +D3 +D2 + 1

]
(B.162)

or equivalently in systematic form

H =

[
D4 +D3 +D2 +D

D6 +D3 +D2 + 1

D5 +D3 +D

D6 +D3 +D2 + 1
1

]
. (B.163)

(Recall that GH∗ = 0, so that G = [I h∗] when H = [h 1].) The circuit for implementation of
this code, in systematic form, is illustrated in Figure B.16 and a labeled (using Ungerboeck
labeling) 64QAM constellation for the code is shown in Figure B.17.

The second example uses a 1-dimensional code in conjunction with the 1+.9D channel that was
studied extensively in EE379A. For this system, given developments in this text to this point, the best
means of applying trellis coding is to use a decision feedback equalizer (infinite length) to eliminate ISI,
and for which our mean-square error sequence will be white (but not necessarily Gaussian, which this
text’s analysis will assume anyway).

EXAMPLE B.4.2 (1 + .9D−1 Revisited for Code Concatenation) From previous study
of this example in earlier chapters, the SNR for the MMSE-DFE was 8.4dB on this 1+ .9D−1

channel with SNRmfb = 10dB and 1 bit/T transmission. The corresponding error rate on
such a system would be completely unacceptable in most applications, so improvement is de-
sirable. A one-dimensional 256-state trellis code from Table B.1 has effective gain 5.47dB. The
shaping gain loss in going from 1bit/T to the 4 levels/T necessary in this code is easily com-
puted as 4/5=-.97dB. The coding gain for this application would then be 5.47-.97=4.50dB.
The probability of error for the coded system would then be

Pe = 2 ·Q(8.4 + 4.5dB) = 2 ·Q(4.41) = 10−5 . (B.164)

Unfortunately, error propagation in the internal DFE is now more likely, not only because
an uncoded system would have had a high probability of error of about .01, but also because
the enlarged constellation from which a DFE would have to make instantaneous decisions
now has more points and smaller symbol-by-symbol-detection distance. A Laroia precoder
here with the enlarged constellation would only lose a few tenths of a dB. The parity matrix
is 1× 2 and can be read from Table B.1 as

H =
[
D7 +D6 +D5 +D4 +D D8 +D6 +D3 +D2 + 1

]
(B.165)

536

00	 01	 04	 05	

07	 02	 03	 06	

34	 35	 20	 21	

33	 36	 27	 22	

10	 11	 14	 15	

17	 12	 13	 16	

24	 25	 30	 31	

23	 26	 37	 32	

40	 41	 44	 45	

47	 42	 43	 46	

74	 75	 60	 61	

73	 76	 67	 62	

50	 51	 54	 55	

57	 52	 53	 56	

64	 65	 70	 71	

63	 66	 77	 72	

L	 a	 b	 e	 l	 s	 	 	 i	 n	 	 	 o	 c	 t	 a	 l	 	 	 (v	 5	 v	 4	 v	 3	 	 	 v	 2	 v	 1	 v	 0)	
SS	 CS	

Figure B.17: Constellation for 64QAM code example with 4.57dB gain.

537

which corresponds to a systematic G of

Gsys =

[
1

D7 +D6 +D5 +D4 +D

D8 +D6 +D3 +D2 + 1

]
. (B.166)

B.4.3.5 Decision-Feedback Sequence Estimation

Decision-Feedback Sequence Estimation (DFSE) essentially eliminates error propagation when DFE’s
are used with coset codes. In DFSE, the survivor into each state is used to determine 2ν possible
feedback-section outputs, one for each state. The ISI-subtraction associated with that correct survivor
is then used in computing the branch metric into each state.

B.4.4 Decoder Complexity Measures

The implementation complexity of a trellis or lattice code depends heavily on the details of the applica-
tion. Nevertheless, it is possible to associate with each coset code, a meaningful measure of complexity.
This measure is mainly relative and used for comparing the use of two different codes in the same
application. The measure used in this book is equivalent to one introduced by Forney in 1988.

This measure is computed for a maximum-likelihood (Viterbi for trellis codes) detector and ignores
encoder complexity. The complexity measure counts the number of additions and number of comparisons
that need to be performed in the straightforward implementation of the decoder and adds these two
numbers together. This measure is essentially a count of the number of instruction cycles that are
required to implement the decoder on a programmable signal processor.

Definition B.4.1 (Decoder Complexity) The quantity ND is called the decoder com-
plexity for a coset code and is defined to be the total number of additions and comparisons
that are needed to implement the decoder in the straightforward maximum-likelihood imple-

mentation. The normalized decoder complexity is N̄D
∆
= ND/N .

In decoding a coset code, the N -dimensional channel output vector y is used to resolve which of the
possible points in each of the cosets used by the code is closest to this received sample y. This step
chooses the parallel transition between states that is more likely than the other such parallel transitions.
Once these parallel transitions (one for each coset) have been chosen, sequence detection (via the Viterbi
algorithm) chooses the sequence of cosets that was most likely.

For one-dimensional coset codes, the resolution of the closet point in each of the 4 cosets is trivial,
and is essentially a truncation of the received vector y, so this operation is not included in ND. Then,
for a rate k/(k + rG) code with 2ν states, the decoder requires 2k adds and 2k − 1 binary comparisons
for each state per received one-dimensional output. This is a total of

ND(one− dimensional) = 2ν
(
2k + 2k − 1

)
= 2ν+k

(
2− 2−k

)
. (B.167)

This computational count is independent of b because it ignores the truncation associated with choosing
among parallel transitions. This also permits the inclusion of ND in the tables of Section B.4.3, which
do not depend on b.

For two-dimensional codes, the parallel-transition resolution that was trivial in one dimension now
requires one addition for each two-dimensional coset. While table look-up or truncation can be used to
resolve each of the one-dimensional components of the two-dimensional y for every coset, ND includes an
operation for the addition of the component one-dimensional metrics to get the two-dimensional metric.
Since there are 2k+rG cosets in the coset code, then

ND(two− dimensional) = 2ν
(
2k + 2k − 1

)
+ 2k+rG = 2ν+k

(
2− 2−k

)
+ 2k+rG , (B.168)

or
N̄D = 2ν+k

(
1− 2−k−1

)
+ 2k+rG−1 . (B.169)

The computation of ND for the higher dimensional codes that is discussed later in this chapter is
similar, except that the resolution of the parallel transitions becomes increasingly important and complex
as the code dimensionality grows.

538

B.5 Multidimensional Trellis Codes

Multidimensional lattices can be combined with trellis coding to get a larger coding gain for a given
complexity, and can also reduce the expansion of the constellation slightly (which may be of importance
if channel nonlinearity is important). This section begins in Section B.5.1 with a discussion of multi-
dimensional partitioning, before then enumerating 4D and 8D coset codes in Section B.5.2.

B.5.1 Lattice Codes and Multidimensional Partitioning

Lattice Codes are sometimes construed as coset codes with G a k × (k + rG) constant matrix (or block
code). For the lattices of interest in this chapter, we need not develop the connection with block codes
and instead consider rG = 0 and any redundancy as part of rΛ. For those interested in the strong
connection, see the work by Forney and by Conway and Sloane. Appendix A of this chapter introduces
lattices.

The fundamental gain of a lattice is defined similar to that of a coset code (where the reference
uncoded system is again a ZN lattice)

γf (Λ)
∆
=
d2
min(Λ)

V2/N (Λ)
=
d2
min(Λ)

22r̄Λ
. (B.170)

Multidimensional symbols are often formed by concatenation of lower-dimensional symbols. For in-
stance, a four-dimensional code symbol is often formed from two-dimensional QAM signals as [QAM1
, QAM2], or perhaps from 4 one-dimensional PAM signals. Eight-dimensional symbols are also formed
by concatenation of four two-dimensional symbols or eight one-dimensional symbols, or even two 4-
dimensional symbols. Certain symbols may be allowed to follow other symbols, while certain other
symbols cannot. This section attempts to enumerate and study the most common four and eight dimen-
sional constellation lattices, and in particular their partitioning for trellis code application.

B.5.1.1 Rectangular Lattice Family

The rectangular lattice in N dimensions is just the lattice ZN , or any coset (translation) thereof. The
volume of such a lattice is

V(ZN) = 1 (B.171)

and the minimum distance is
dmin = 1 (B.172)

leaving a fundamental lattice gain of γf (ZN) = 1 or 0 dB.

Simple Lattice Constructions:
For Example B.3.2,

D2
∆
= R2Z

2 , (B.173)

V(D2) = 2 and dmin(D2) =
√

2, so that γf (D2) = 0 dB. D2 partitions Z2, and |Z2/D2| = 2 so that

V(D2) = |Z2/D2| · V(Z2) . (B.174)

More generally:

Theorem B.5.1 (Volume and Partitioning) if a sublattice Λ′ partitions the lattice Λ,
then

V(Λ′) = |Λ/Λ′| · V(Λ) . (B.175)

Proof: Because there are 1
|Λ/Λ′| as many points in Λ′ as in Λ, and the union of fundamental

volumes for all points in a lattice must cover N -dimensional space, then V(Λ′) must be |Λ/Λ′|
times larger. QED.

539

Two successive applications of R2 produce

R2
2 =

[
2 0
0 2

]
, (B.176)

a scaling of the original lattice by a factor of 2, so that dmin increases by 2, and volume (area) increases
by a factor of 4, and γf remains at 0 dB. The resultant lattice is

R2
2Z

2 = R2D2 = 2Z2 . (B.177)

The semi-infinite partition chain is:

Z2/R2Z
2/R2

2Z
2/R3

2Z
2/R4

2Z
2... (B.178)

Z2/D2/2Z
2/2D2/4Z

2/... (B.179)

The two-dimensional partitioning for two-dimensional trellis codes is generated by successive application
of the rotation operator R2.

The concept of the rotation operator can be extended to 4 dimensions by defining

R4
∆
=

[
R2 0
0 R2

]
, (B.180)

and multiplication of a four-dimensional lattice by R4 amounts to applying R2 independently to the
first two coordinates of a four-dimensional lattice and to the last two coordinates of that same lattice to
generate a new four-dimensional set of points. Thus,

R4Z
4 = R2Z

2 ⊗R2Z
2 (B.181)

and that R4Z
4 partitions Z4 four ways, that is |Z4/R4Z

4| = 4.

Z4 = R4Z
4 + {[0000], [0001], [0100], [0101]} . (B.182)

Then,
V(R4Z

4) = |Z4/R4Z
4| · V(Z4) = 4 · 1 = 4 , (B.183)

and that d2
min(R4Z

4) = 2, so that

γf (R4Z
4) =

2

42/4
= 1 (0 dB) . (B.184)

Similarly, R8 is

R8
∆
=

[
R4 0
0 R4

]
. (B.185)

Then, d2
min(R8Z

8) = 2, V(R8Z
8) = 16, and

γf (R8Z
8) =

2

162/8
= 1 (0 dB) . (B.186)

Lemma B.5.1 (Invariance of fundamental gain to squaring and rotation) The fun-
damental gain of a lattice is invariant under rotation and/or squaring.

Proof: The rotation operation increases volume by 2N/2 and squared minimum distance
by 2, thus γf (RΛ) = 2/{2[(N/2)(2/N)]}γf (Λ) = γf (Λ). The squaring operation squares the
volume and doubles the dimensionality, but does not alter the minimum distance, thus γf (Λ)
is not altered. QED.

540

R
2
Z 2 R

2
Z 2

R
2
Z 2 + 0 1!

"#
$
%&

R
2
Z 2 + 0 1!

"#
$
%&

Figure B.18: Trellis for the D4 lattice.

B.5.1.2 D - Lattice Family

The lattice D2 = R2Z
2 is a rotated (and scaled) version of the Z2 lattice. It partitions Z2 into two sets,

D2 and D2 + [0, 1], that is

Z2 = D2

⋃
(D2 + [0, 1]) (B.187)

In four dimensions, that R4Z
4 partitions Z4 into 4 sets – the D4 lattice partitions Z4 into two sets.

This lattice is sometimes called the “Schlafi Lattice”:

D4
∆
= R4Z

4
⋃(

R4Z
4 + [0, 1, 0, 1]

)
(B.188)

=
(
R2Z

2 ⊗R2Z
2
)⋃(

(R2Z
2 + [0, 1])⊗ (R2Z

2 + [0, 1])
)

, (B.189)

which can be identified as all those points in Z4 that have even squared norms. Thus, D4 partitions Z4

into two sets of points (evens and odds). For D4, d2
min(D4) = 2 and V(D4) = 2, so that

γf (D4) =
2

22/4
=
√

2 = 1.5 dB . (B.190)

Equation (B.190) relates that the D4 lattice is better in terms of packing points per unit volume than the
rectangular lattice family by a factor of 1.5 dB. In fact, D4 is the best such lattice in four dimensions.

The D4 lattice is a simple coset code or lattice code that can be described by a trellis that starts and
ends with a single state, but which has two states in the middle as shown in Figure B.18. The Viterbi
Algorithm for MLSD can be applied to the trellis in Figure B.18 to decode the D4 lattice in the same
way that the Viterbi Algorithm is used for trellis codes.

In eight dimensions, R8Z
8 partitions Z8 into 16 cosets of R8Z

8 so that

|Z8/R8Z
8| = 16 . (B.191)

Also since
∣∣Z4/D4

∣∣ = 2, then

|Z8/(D4)2| = 4 . (B.192)

A binary partition (of order 2) is desirable:

D8
∆
= (D4 ⊗D4)

⋃
((D4 + [0, 0, 0, 1])⊗ (D4 + [0, 0, 0, 1])) , (B.193)

541

D 4 D 4

+	 D 4 0 0 0 1 +	 D 4 0 0 0 1

R 2 Z 2

R 2 Z 2 + [0 1]

R 2 Z 2

R 2 Z 2 + [0 1]

R 2 Z 2 + [0 1]

R 2 Z 2

R 2 Z 2

R 2 Z 2 + [0 1]

R 2 Z 2

R 2 Z 2 R 2 Z 2 + [0 1]

R 2 Z 2 + [0 1]

R 2 Z 2

R 2 Z 2 + [0 1]

R 2 Z 2

R 2 Z 2 + [0 1]

a) . 4 D T r e l l i s f o r D 8

b) . 2 D T r e l l i s f o r D 8

Figure B.19: Trellis for the D8 lattice.

which is the subset of Z8 of all points with even squared norms. Thus,

Z8 = D8

⋃
(D8 + [0, 0, 0, 0, 0, 0, 0, 1]) . (B.194)

d2
min(D8) = 2 and V(D8) = 2, so that

γf (D8) =
2

22/8
= 2.75 = 2.27 dB . (B.195)

Thus, D8 is somewhat better than D4. Also observe that (D4)2 partitions D8 from (B.193), that
|D8/(D4)2| = 2, and that γf (D2

4) = 1.5 dB, which also follows from Lemma B.5.1
A trellis similar to that in Figure B.18 can be drawn for the D8 lattice as shown in Figure B.19.

Each of the D4 trellises in Figure B.19 can be replaced by D4 trellises leading to the more informative
2-dimensional trellis for D8 in Figure B.19. Again, the Viterbi algorithm can decode the D8 lattice using
these trellises.

B.5.1.3 The DE8 Lattice

The DE8 lattice is defined by

DE8
∆
= (R4Z

4)2
⋃(

(R4Z
4)2 + [0, 1, 0, 1, 0, 1, 0, 1]

)
(B.196)

= R8Z
8
⋃(

R8Z
8 + [0, 1, 0, 1, 0, 1, 0, 1]

)
(B.197)

542

DE8 partitions (D4)2 into two groups by

(D4)2 =
[(
R4Z

4
)⋃(

R4Z
4 + [0, 1, 0, 1]

)]2
=

(
R4Z

4
)2⋃(

R4Z
4 + [0, 1, 0, 1]

)2⋃(
R4Z

4 ⊗ (R4Z
4 + [0, 1, 0, 1])

)⋃(
(R4Z

4 + [0, 1, 0, 1])⊗R4Z
4
)

= DE8

⋃
(DE8 + [0, 1, 0, 1, 0, 0, 0, 0]) . (B.198)

The last step notes that with respect to the R4Z
4 lattice, adding [0,2,0,2] is equivalent to adding [0,0,0,0].

d2
min(DE8) = 2 and V(DE8) = 8, so that

γf (DE8) =
2

82/8
= 2.25 = .73 dB . (B.199)

So far, previous results have established the partition chain

Z8/D8/D
2
4/DE8 (B.200)

with a factor of 2 increase in lattice fundamental volume at each step in the partitioning. One is
tempted to complete the chain by partitioning again into R8Z

8, which would be a valid partition. The
next subsection shows another partition into a much better 8 dimensional lattice.

The trellis diagram for the DE8 lattice is trivial and left to the reader as an exercise.

B.5.1.4 The Gosset (E8) Lattice

The Gosset or E8 Lattice is the most dense lattice in 8 dimensions. It is defined by

E8
∆
= R8D8

⋃
(R8D8 + [0, 1, 0, 1, 0, 1, 0, 1]) . (B.201)

All norms of points in E8 are integer multiples of 4. Since rotation by RN increases distance by a factor
of
√

2, inspection of the coset leader in the second term of (B.201) leads to

d2
min(E8) = 4 (B.202)

Further, |E8/R8D8| = 2, so that

V(E8) =
1

2
V(R8D8) =

1

2
16 · 2 = 16 . (B.203)

Then,

γf (E8) =
4

162/8
= 2 (3 dB) . (B.204)

A simple trellis in terms of the 4 dimensional constituents appears in Figure B.20, where the Cartesian
product decomposition for D8 in Equation (B.193) has been used along with the fact that rotation
by R8 is the same as rotating each four-dimensional constituent by R4. A two-dimensional trellis is
then constructed by drawing the 2D trellises for D4 wherever they appear in Figure B.20. This two-
dimensional trellis appears in Figure B.21.

The assumption that E8 partitions DE8 is justified by taking

Z8 = D8

⋃
(D8 + [0, 0, 0, 0, 0, 0, 0, 1]) (B.205)

and premultiplying by R8

R8Z
8 = R8D8

⋃
(R8D8 + [0, 0, 0, 0, 0, 0, 1,−1]) , (B.206)

making (B.197) the same as

DE8 = R8D8

⋃
(R8D8 + [0, 0, 0, 0, 0, 0, 1,−1]) (B.207)⋃

(R8D8 + [0, 1, 0, 1, 0, 1, 0, 1])
⋃

(R8D8 + [0, 1, 0, 1, 0, 1, 1, 0]) (B.208)

= E8

⋃
(E8 + [0, 0, 0, 0, 0, 0, 1,−1]) . (B.209)

Thus, E8 partitions DE8 and |DE8/E8| = 2.

543

R	 4	 D	 4	 +
	 0	 	 	 0	 	 	 1

	 	 	 -‐	 1	

R	 4	 D	 4	 R	 4	 D	 4	

R	 4	 D	 4	 +
	 0	 	 	 1	 	 	 0

	 	 	 1	

R	 4	 D	 4	 +	 0	 	 	 0	 	 	 1	 	 	 -‐	 1	

R	 4	 D	 4	 +	 0	 	 	 1	 	 	 0	 	 	 1	

Figure B.20: 4D Trellis for the E8 lattice.

vi d2
min(Λ) V(Λ) γf (Λ) dB

– Z4 1 1 0
v0 D4 2 2 1.5
v1 R4Z

4 2 4 0
v2 R4D4 4 8 1.5
v3 2Z4 4 16 0
v4 2D4 8 32 1.5

Table B.7: Four-dimensional partition tower and lattice parameters.

B.5.1.5 4 and 8 Dimensional Partition Chains

The previous subsections established the four-dimensional partition chain

Z4/D4/R4Z
4/R4D4/2Z

4/2D4/... (B.210)

and the eight-dimensional partition chain

Z8/D8/D
2
4/DE8/E8/R8D8/(R4D4)2/R8DE8/R8E8/... (B.211)

These partition chains are summarized in the partition towers and accompanying tables in Tables B.7
and B.8. These partitionings are also used extensively in four- and eight-dimensional trellis codes, as
discussed in the next section. Figure B.22 is a partition tree showing the specific labels for a four-
dimensional partitioning with Ungerboeck labeling. Each of the cosets of the original constellation in
Figure B.22 can be written as (possibly unions of) Cartesian products of two-dimensional cosets in the

544

2	 Z	 2	

2	 Z	 2	 2	 Z	 2	

2	 Z	 2	

2	 Z	 2	 2	 Z	 2	

2	 Z	 2	 +	
 0	 ,	 1	 [
]	
 2	 Z	 2	 +	
 0	 ,	 1	 [
]	

2	 Z	 2	 +	
 0	 ,	 1	 [
]	
2	 Z	 2	 +	
 0	 ,	 1	 [
]	

Figure B.21: 2D Trellis for the E8 lattice.

vi d2
min(Λ) V(Λ) γf (Λ) dB

– Z8 1 1 0
v0 D8 2 2 2.27
v1 (D4)2 2 4 1.5
v2 DE8 2 8 .73
v3 E8 4 16 3
v4 R8D8 4 32 2.27
v5 R8(D4)2 4 64 1.5
v6 R8DE8 4 128 .73
v7 R8E8 8 256 3

Table B.8: Eight-Dimensional Partition Tower and Lattice Parameters

545

	 A4
0

 B4
0 B4

1

B40

B42 B4
1

 B4
3

 C4
0

 C4
4

 C4
2 C4

6
 C4
1

 C4
3

 C4
5

 C4
7

C40

C48
C44 C4

C C4
2

 C4
A

 C4
6

 C4
E

 C4
1

 C4
9

 C4
5

 C4
D

 C4
3

 C4
B

 C4
7

 C4
F

 D4
0

 D4
10

 D4
8

 D4
18 D4

4

 D4
14
D4C

 D4
1C
 D4
2

 D4
12
D4A

 D4
1A
D46

 D4
16
D4E

 D4
1E
D41

 D4
11
D49

 D4
19
 D4
5

 D4
15
D4D

 D4
1D D4

3

 D4
13
D4B

 D4
1B
D47

 D4
17
D4F

 D4
1F

Z 4

D4

RZ 4

RD4

2Z 4

2D4

dmin

2
1

2

2

2

2 2

Figure B.22: Four-dimensional partition tree with Ungerboeck labeling - indices of C̄ and of D are in
hexadecimal.

partitioning of the Z2 lattice. This section lists those Cartesian products for reference:

A0
4 = A0

2 ⊗A0
2 (B.212)

B0
4 =

(
B0

2 ⊗B0
2

)⋃(
B1

2 ⊗B1
2

)
(B.213)

B1
4 =

(
B0

2 ⊗B1
2

)⋃(
B1

2 ⊗B0
2

)
(B.214)

B̄0
4 = B0

2 ⊗B0
2 (B.215)

B̄2
4 = B1

2 ⊗B1
2 (B.216)

B̄1
4 = B0

2 ⊗B1
2 (B.217)

B̄3
4 = B1

2 ⊗B0
2 (B.218)

546

C0
4 =

(
C0

2 ⊗ C0
2

)⋃(
C2

2 ⊗ C2
2

)
(B.219)

C4
4 =

(
C0

2 ⊗ C2
2

)⋃(
C2

2 ⊗ C0
2

)
(B.220)

C2
4 =

(
C1

2 ⊗ C1
2

)⋃(
C3

2 ⊗ C3
2

)
(B.221)

C6
4 =

(
C1

2 ⊗ C3
2

)⋃(
C3

2 ⊗ C1
2

)
(B.222)

C1
4 =

(
C0

2 ⊗ C1
2

)⋃(
C2

2 ⊗ C3
2

)
(B.223)

C5
4 =

(
C0

2 ⊗ C3
2

)⋃(
C2

2 ⊗ C1
2

)
(B.224)

C3
4 =

(
C1

2 ⊗ C0
2

)⋃(
C3

2 ⊗ C2
2

)
(B.225)

C7
4 =

(
C1

2 ⊗ C2
2

)⋃(
C3

2 ⊗ C0
2

)
(B.226)

C̄0
4 = C0

2 ⊗ C0
2 (B.227)

C̄8
4 = C2

2 ⊗ C2
2 (B.228)

C̄4
4 = C0

2 ⊗ C2
2 (B.229)

C̄C4 = C2
2 ⊗ C0

2 (B.230)

C̄2
4 = C1

2 ⊗ C1
2 (B.231)

C̄A4 = C3
2 ⊗ C3

2 (B.232)

C̄6
4 = C1

2 ⊗ C3
2 (B.233)

C̄E4 = C3
2 ⊗ C1

2 (B.234)

C̄1
4 = C0

2 ⊗ C1
2 (B.235)

C̄9
4 = C2

2 ⊗ C3
2 (B.236)

C̄5
4 = C0

2 ⊗ C3
2 (B.237)

C̄D4 = C2
2 ⊗ C1

2 (B.238)

C̄3
4 = C1

2 ⊗ C0
2 (B.239)

C̄B4 = C3
2 ⊗ C2

2 (B.240)

C̄7
4 = C1

2 ⊗ C2
2 (B.241)

C̄F4 = C3
2 ⊗ C0

2 (B.242)

547

D0
4 =

(
D0

2 ⊗D0
2

)⋃(
D4

2 ⊗D4
2

)
(B.243)

D10
4 =

(
D0

2 ⊗D4
2

)⋃(
D4

2 ⊗D0
2

)
(B.244)

D8
4 =

(
D2

2 ⊗D2
2

)⋃(
D6

2 ⊗D6
2

)
(B.245)

D18
4 =

(
D2

2 ⊗D6
2

)⋃(
D6

2 ⊗D2
2

)
(B.246)

D4
4 =

(
D0

2 ⊗D2
2

)⋃(
D4

2 ⊗D6
2

)
(B.247)

D14
4 =

(
D0

2 ⊗D6
2

)⋃(
D4

2 ⊗D2
2

)
(B.248)

DC
4 =

(
D2

2 ⊗D0
2

)⋃(
D6

2 ⊗D4
2

)
(B.249)

D1C
4 =

(
D2

2 ⊗D4
2

)⋃(
D6

2 ⊗D0
2

)
(B.250)

D2
4 =

(
D1

2 ⊗D1
2

)⋃(
D5

2 ⊗D5
2

)
(B.251)

D12
4 =

(
D1

2 ⊗D5
2

)⋃(
D5

2 ⊗D1
2

)
(B.252)

DA
4 =

(
D3

2 ⊗D3
2

)⋃(
D7

2 ⊗D7
2

)
(B.253)

D1A
4 =

(
D3

2 ⊗D7
2

)⋃(
D7

2 ⊗D3
2

)
(B.254)

D6
4 =

(
D1

2 ⊗D3
2

)⋃(
D5

2 ⊗D7
2

)
(B.255)

D16
4 =

(
D1

2 ⊗D7
2

)⋃(
D5

2 ⊗D3
2

)
(B.256)

DE
4 =

(
D3

2 ⊗D1
2

)⋃(
D7

2 ⊗D5
2

)
(B.257)

D1E
4 =

(
D3

2 ⊗D5
2

)⋃(
D7

2 ⊗D1
2

)
(B.258)

548

D1
4 =

(
D0

2 ⊗D1
2

)⋃(
D4

2 ⊗D5
2

)
(B.259)

D11
4 =

(
D0

2 ⊗D5
2

)⋃(
D4

2 ⊗D1
2

)
(B.260)

D9
4 =

(
D2

2 ⊗D3
2

)⋃(
D6

2 ⊗D7
2

)
(B.261)

D19
4 =

(
D2

2 ⊗D7
2

)⋃(
D6

2 ⊗D3
2

)
(B.262)

D5
4 =

(
D0

2 ⊗D3
2

)⋃(
D4

2 ⊗D7
2

)
(B.263)

D15
4 =

(
D0

2 ⊗D7
2

)⋃(
D4

2 ⊗D3
2

)
(B.264)

DD
4 =

(
D2

2 ⊗D1
2

)⋃(
D6

2 ⊗D5
2

)
(B.265)

D1D
4 =

(
D2

2 ⊗D5
2

)⋃(
D6

2 ⊗D1
2

)
(B.266)

D3
4 =

(
D1

2 ⊗D0
2

)⋃(
D5

2 ⊗D4
2

)
(B.267)

D13
4 =

(
D1

2 ⊗D4
2

)⋃(
D5

2 ⊗D0
2

)
(B.268)

DB
4 =

(
D3

2 ⊗D2
2

)⋃(
D7

2 ⊗D6
2

)
(B.269)

D1B
4 =

(
D3

2 ⊗D6
2

)⋃(
D7

2 ⊗D2
2

)
(B.270)

D7
4 =

(
D1

2 ⊗D2
2

)⋃(
D5

2 ⊗D6
2

)
(B.271)

D17
4 =

(
D1

2 ⊗D6
2

)⋃(
D5

2 ⊗D2
2

)
(B.272)

DF
4 =

(
D3

2 ⊗D0
2

)⋃(
D7

2 ⊗D4
2

)
(B.273)

D1F
4 =

(
D3

2 ⊗D4
2

)⋃(
D7

2 ⊗D0
2

)
(B.274)

In order to more completely understand the entries in the four-dimensional coding tables, we also
summarize some partitioning results in four-dimensions in Table B.9.

549

A0
4

dmin w.r.t. A0
4 1

Ne w.r.t. A0
4 8

B0
4 B1

4

dmin w.r.t. B0
4

√
2 1

Ne w.r.t. B0
4 24 8

B̄0
4 B̄2

4 B̄1
4 B̄3

4

dmin w.r.t. B̄0
4

√
2

√
2 1 1

Ne w.r.t. B̄0
4 8 16 4 4

C0
4 C4

4 C2
4 C6

4 C1
4 C5

4 C3
4 C7

4

dmin w.r.t. C0
4 2

√
2

√
2

√
2 1 1 1 1

Ne w.r.t. C0
4 24 8 8 8 2 2 2 2

C̄0
4 C̄4

4 C̄2
4 C̄6

4 C̄1
4 C̄5

4 C̄3
4 C̄7

4

dmin w.r.t. C̄0
4 2

√
2

√
2

√
2 1 1 1

√
3

Ne w.r.t. C̄0
4 8 4 4 4 2 2 2 8

C̄8
4 C̄C4 C̄A4 C̄E4 C̄9

4 C̄D4 C̄B4 C̄F4
dmin w.r.t. C̄0

4 2
√

2
√

2
√

2
√

3
√

3
√

3 1
Ne w.r.t. C̄0

4 16 4 4 4 8 8 8 2

D0
4 D4

4 D2
4 D6

4 D1
4 D5

4 D3
4 D7

4

dmin w.r.t. D0
4 2

√
2

√
2

√
2

√
2 1 1 1

√
3

Ne w.r.t. D0
4 24 2 2 2 1 1 1 4

D8
4 DC

4 DA
4 DE

4 D9
4 DD

4 DB
4 DF

4

dmin w.r.t. D0
4 2

√
2

√
2

√
2

√
3

√
3

√
3 1

Ne w.r.t. D0
4 8 2 2 2 4 4 4 1

D10
4 D14

4 D12
4 D16

4 D11
4 D15

4 D13
4 D17

4

dmin w.r.t. D0
4 2

√
2

√
2

√
2 1 1 1

√
3

Ne w.r.t. D0
4 8 2 2 2 1 1 1 4

D18
4 D1C

4 D1A
4 D1E

4 D19
4 D1D

4 D1B
4 D1F

4

dmin w.r.t. D0
4 2

√
2

√
2

√
2

√
3

√
3

√
3 1

Ne w.r.t. D0
4 8 2 2 2 4 4 4 1

Table B.9: Four-Dimensional Partitioning

550

dmin

2

1

2

2

2

 A80

 B80 B81

 B8
0 B8

2 B8
1

 B8
3

 C80 C82 C86 C83 C87

 B̃81 B̃80 B̃84 B̃82

 C84

 B̃86

 C81

 B̃85 B̃83 B̃87

 C83 C88 C8C C8A C8E C8D C8B C8F C89

 C80

 C8
0 C8

1

 C̃80 C̃82 C̃83 C̃81

ÝC80

ÝC84
ÝC82

ÝC86
ÝC81

ÝC85
ÝC83

ÝC87

 D80 D88 D84 D82 D8C D8A D86 D8E D81 D89 D85 D8D D83 D8B D87 D8F

2

2

2

2 2

 R8D8

 R8(D4)
2

 R8(DE8)

 R8E8

 E8

 Z8

 D8

 (D4)
2

 DE8

 E8

Figure B.23: Eight-dimensional partition tree with Ungerboeck labeling.

The subscript on a partition refers to the dimension of the underlying coset code, while the superscript
refers to the coset index with an Ungerboeck labeling.

Figure B.23 is a partition tree showing the specific labels for a eight-dimensional partitioning with
Ungerboeck labeling. Each of the cosets of the original constellation in Figure B.23 can be written as
(possibly unions of) Cartesian products of two-dimensional cosets in the partitioning of the Z4 lattice.
Those Cartesian products are (for reference):

A0
8 = A0

4 ⊗A0
4 (B.275)

B0
8 =

(
B0

4 ⊗B0
4

)⋃(
B1

4 ⊗B1
4

)
(B.276)

B1
8 =

(
B0

4 ⊗B1
4

)⋃(
B1

4 ⊗B0
4

)
(B.277)

B̄0
8 = B0

4 ⊗B0
4 (B.278)

B̄2
8 = B1

4 ⊗B1
4 (B.279)

B̄1
8 = B0

4 ⊗B1
4 (B.280)

B̄3
8 = B1

4 ⊗B0
4 (B.281)

551

B̃0
8 =

(
B̄0

4 ⊗ B̄0
4

)⋃(
B̄2

4 ⊗ B̄2
4

)
(B.282)

B̃4
8 =

(
B̄0

4 ⊗ B̄2
4

)⋃(
B̄2

4 ⊗ B̄0
4

)
(B.283)

B̃2
8 =

(
B̄1

4 ⊗ B̄1
4

)⋃(
B̄3

4 ⊗ B̄3
4

)
(B.284)

B̃6
8 =

(
B̄1

4 ⊗ B̄3
4

)⋃(
B̄3

4 ⊗ B̄1
4

)
(B.285)

B̃1
8 =

(
B̄0

4 ⊗ B̄1
4

)⋃(
B̄2

4 ⊗ B̄3
4

)
(B.286)

B̃5
8 =

(
B̄0

4 ⊗ B̄3
4

)⋃(
B̄2

4 ⊗ B̄1
4

)
(B.287)

B̃3
8 =

(
B̄1

4 ⊗ B̄0
4

)⋃(
B̄3

4 ⊗ B̄2
4

)
(B.288)

B̃7
8 =

(
B̄1

4 ⊗ B̄2
4

)⋃(
B̄3

4 ⊗ B̄0
4

)
(B.289)

C0
8 =

(
C0

4 ⊗ C0
4

)⋃(
C4

4 ⊗ C4
4

)⋃(
C2

4 ⊗ C2
4

)⋃(
C6

4 ⊗ C6
4

)
C8

8 =
(
C0

4 ⊗ C4
4

)⋃(
C4

4 ⊗ C0
4

)⋃(
C2

4 ⊗ C6
4

)⋃(
C6

4 ⊗ C2
4

)
C4

8 =
(
C0

4 ⊗ C2
4

)⋃(
C4

4 ⊗ C6
4

)⋃(
C2

4 ⊗ C0
4

)⋃(
C6

4 ⊗ C4
4

)
CC8 =

(
C0

4 ⊗ C6
4

)⋃(
C4

4 ⊗ C2
4

)⋃(
C2

4 ⊗ C4
4

)⋃(
C6

4 ⊗ C0
4

)
C2

8 =
(
C1

4 ⊗ C1
4

)⋃(
C5

4 ⊗ C5
4

)⋃(
C3

4 ⊗ C3
4

)⋃(
C7

4 ⊗ C7
4

)
CA8 =

(
C1

4 ⊗ C5
4

)⋃(
C5

4 ⊗ C1
4

)⋃(
C3

4 ⊗ C7
4

)⋃(
C7

4 ⊗ C3
4

)
C6

8 =
(
C1

4 ⊗ C3
4

)⋃(
C5

4 ⊗ C7
4

)⋃(
C3

4 ⊗ C1
4

)⋃(
C7

4 ⊗ C5
4

)
CE8 =

(
C1

4 ⊗ C7
4

)⋃(
C5

4 ⊗ C3
4

)⋃(
C3

4 ⊗ C5
4

)⋃(
C7

4 ⊗ C1
4

)
C1

8 =
(
C0

4 ⊗ C1
4

)⋃(
C4

4 ⊗ C5
4

)⋃(
C2

4 ⊗ C3
4

)⋃(
C6

4 ⊗ C7
4

)
C9

8 =
(
C0

4 ⊗ C5
4

)⋃(
C4

4 ⊗ C1
4

)⋃(
C2

4 ⊗ C7
4

)⋃(
C6

4 ⊗ C3
4

)
C5

8 =
(
C0

4 ⊗ C3
4

)⋃(
C4

4 ⊗ C7
4

)⋃(
C2

4 ⊗ C1
4

)⋃(
C6

4 ⊗ C5
4

)
CD8 =

(
C0

4 ⊗ C7
4

)⋃(
C4

4 ⊗ C3
4

)⋃(
C2

4 ⊗ C5
4

)⋃(
C6

4 ⊗ C1
4

)
C3

8 =
(
C1

4 ⊗ C0
4

)⋃(
C5

4 ⊗ C4
4

)⋃(
C3

4 ⊗ C2
4

)⋃(
C7

4 ⊗ C6
4

)
CB8 =

(
C1

4 ⊗ C4
4

)⋃(
C5

4 ⊗ C0
4

)⋃(
C3

4 ⊗ C6
4

)⋃(
C7

4 ⊗ C2
4

)
C7

8 =
(
C1

4 ⊗ C2
4

)⋃(
C5

4 ⊗ C6
4

)⋃(
C3

4 ⊗ C0
4

)⋃(
C7

4 ⊗ C4
4

)
CF8 =

(
C1

4 ⊗ C6
4

)⋃(
C5

4 ⊗ C2
4

)⋃(
C3

4 ⊗ C4
4

)⋃(
C7

4 ⊗ C0
4

)
For the reader’s and designer’s assistance, Table B.10 lists the distances and nearest neighbor counts

for eight-dimensional partitioning

B.5.2 Multidimensional Trellis Codes

This section returns to the coset-code encoder, which is re-illustrated in Figure B.24. Typically, rG = 1,
although there are a few (mainly impractical) codes for which rG > 1. Thus, signal expansion is over
many dimensions, and thus there is a smaller constellation expansion over any particular dimension.
However, as determined in Section B.5.1, more levels of partitioning will be necessary to increase dis-
tance on the parallel transitions defined by Λ′ and its cosets to an attractive level. The lower signal
expansion per dimension is probably the most attractive practical feature of multi-dimensional codes.
Constellation expansion makes the coded signals more susceptible to channel nonlinearity and carrier
jitter in QAM. Constellation expansion can also render decision-directed (on a symbol-by-symbol basis)

552

A0
8

dmin w.r.t. A0
8 1

Ne w.r.t. A0
8 16

B0
8 B1

8

dmin w.r.t. B0
8

√
2 1

Ne w.r.t. B0
8 132 16

B̄0
8 B̄2

8 B̄1
8 B̄3

8

dmin w.r.t. B̄0
8

√
2

√
2 1 1

Ne w.r.t. B̄0
8 48 64 8 8

B̃0
8 B̃4

8 B̃2
8 B̃6

8 B̃1
8 B̃5

8 B̃3
8 B̃7

8

dmin w.r.t. B̃0
8

√
2
√

2
√

2
√

2 1 1 1 1

Ne w.r.t. B̃0
8 16 32 32 32 4 4 4 4

C0
8 C4

8 C2
8 C6

8 C1
8 C5

8 C3
8 C7

8

dmin w.r.t. C0
8 2

√
2
√

2
√

2 1 1 1
√

3
Ne w.r.t. C0

8 240 16 16 16 2 2 2 2

C8
8 CC8 CA8 CE8 C9

8 CD8 CB8 CF8
dmin w.r.t. C0

8

√
2
√

2
√

2
√

2 1 1 1 1
Ne w.r.t. C0

8 16 16 16 16 2 2 2 2

Table B.10: Eight-Dimensional Partitioning

x	
m	

Binary	 Encoder	
	 G	

k	 bits	

b-‐k	 bits	

Coset	 Select	
	 (CS)	

Signal	 Select	
	 (SS)	

	 	 	 	 	 	 	 	 	 	 	 	

k	 +	 r	 G	
bits	

	 (sequence	 in	 C)	

 one	 of	 	 2	 k	 +	
r	 G	 	 cosets	 of	 	 Λ	
'	

 Λ	
 Λ	
'	

 one	 of	 	 2	
b	 +	
r	 G	 	 points	 in	 	 Λ	

Figure B.24: The coset-code encoder.

553

 B	 4	
0	 B	 4	

2	

 B	 4	
1	 B	 4	

3	

Figure B.25: Trellis for 2-state, rate 1/2, 4D code.

 C	 4	
0	 C	 4	

2	

 C	 4	
4	 C	 4	

6	

Figure B.26: Trellis for 2-state, rate 1/2, 4D Code, based on D4.

timing and carrier loops, as well as the decision-feedback equalizer, sub-desirable in their performance
due to increased symbol-by-symbol error rates.

Multidimensional codes can be attractive because the computation required to implement the Viterbi
Detector is distributed over a longer time interval, usually resulting in a slight computational reduction
(only slight, as we shall see that parallel transition resolving in the computation of the branch metrics
becomes more difficult). One particularly troublesome feature of multidimensional trellis codes is, how-
ever, a propensity towards high nearest neighbor counts, with the resultant significant decrease in γf to
γ̃f .

Subsection B.5.2.1 introduces a few simple examples of multidimensional trellis codes. Subsection
B.5.2.2 lists the most popular 4 dimensional codes in tabular form, similar to the tables in Section B.4.3.
Subsection B.5.2.3 lists the most popular 8 dimensional codes.

B.5.2.1 Multidimensional Trellis Code Examples

EXAMPLE B.5.1 (2-state, rate 1/2, 4D Code) The code uses Λ = Z4 and Λ′ = R4Z
4.

The two-state trellis is shown in Figure B.25. The labels for the various subsets are as in-
dicated in the tables of Section B.5.1. The minimum distance is given by d2

min = 2, and

r̄C = 0 + 1
4 . Thus, the fundamental gain is

γf =
2

22·1/4 =
√

2 (1.5 dB) . (B.290)

This gain is no better than the D4 gain, which required no states. However, N̄e(D4) = 6,
whereas for this code N̄e = 2, so the effective gain for the D4 lattice code is about 1.2dB,
while it is a full 1.5dB for this 2-state trellis code.

EXAMPLE B.5.2 (2-state, rate 1/2, 4D Code, based on D4) The code uses Λ = D4

and Λ′ = R4D4. The two-state trellis is shown in Figure B.26. The labels for the various
subsets are as indicated on the tables in Section B.5.1. The minimum distance is given by

554

0246	

1357	

4602	

5713	

2064	

3175	

6420	

7531	

0426	

4062	

2604	

6240	

1537	

5173	

3715	

7351	

000	

001	

010	

011	

101	

110	

100	

111	

 i	 ←	
C	 4	
i	

Figure B.27: Trellis for Wei’s 8-state, rate 2/3, 4D Code (same as 8-state 2 dimensional Ungerboeck
trellis, except branch index of i stands for coset Ci4)

d2
min = 4, and r̄C = 1

4 + 1
4 .4 Thus, the fundamental gain is

γf =
4

22·1/2 = 2 (3.01 dB) . (B.291)

This gain is better than the D4 gain, which required no states. However, N̄e = 22 (=
24+8×8

4), so the effective gain is about 2.31 dB for this code.

EXAMPLE B.5.3 (Wei’s 8-state, rate 2/3, 4D Code) The code uses Λ = Z4 and
Λ′ = R4D4. The 8-state trellis is shown in Figure B.27. The labels for the various sub-
sets are as indicated on the tables in Section B.5.1. The minimum distance is given by
d2
min = 4, and r̄C = 0 + 1

4 . Thus, the fundamental gain is

γf =
4

22·1/4 = 21.5 (4.52 dB) . (B.292)

This gain is yet better. However, N̄e = 22 (= 24+8×8
4), so the effective gain is about 3.83

dB for this code.

EXAMPLE B.5.4 (Wei’s 16-state, rate 2/3, 4D Code) The code uses Λ = Z4 and
Λ′ = R4D4. The 16-state trellis is shown in Figure B.28. The minimum distance is given by

4Note that r̄Λ = 1/4 for Λ = D4.

555

0246

1357

2064

3175

4602

5713

6420

7531

2064

3175

0246

1357

6420

7531

4602

5713

	
i←C4

i

Figure B.28: Trellis for Wei’s 16-state, rate 2/3, 4D code.

556

 D 8
0 0 D 8

4 0 D 8
8 0 D 8

C 0

 D 8
1 0 D 8

5 0 D 8
9 0 D 8

D 0

 D 8
2 0 D 8

6 0 D 8
A 0 D 8

E 0

D 8
3 0 D 8

7 0 D 8
B 0 D 8

F 0

Figure B.29: Trellis for 4-state, rate 2/4, 8D Code

d2
min = 4, and r̄C = 1

4 + 0. Thus, the fundamental gain is

γf =
4

22·1/4 = 21.5 (4.52 dB) . (B.293)

This gain is the same as for 8 states. However, N̄e = 6, so the effective gain is about 4.2 dB
for this code, which is better than the 8-state code. This code is the most commonly found
code in systems that do use a 4-dimensional trellis code and has been standardized as one
option in the CCITT V.fast code for 28.8 Kbps (uncompressed) voiceband modems (with
minor modification, see Section ?? and also for Asymmetric Digital Subscriber Line (ADSL)
transceivers. There is a 32-state 4-dimensional Wei code with N̄e = 2, so that its effective
gain is the full 4.52dB.

EXAMPLE B.5.5 (4-state, rate 2/4, 8D Code) The code uses Λ = E8 and Λ′ = R8E8.
The two-state trellis is shown in Figure B.29. The minimum distance is given by d2

min = 8,

and r̄C = 4
8 + 2

8 = .75.5 Thus, the fundamental gain is

γf =
8

22·3/4 = 21.5 (4.52 dB) . (B.294)

This gain is better than for any other 4-state code presented so far. However, N̄e = 126 (=
240+3(16×16)

8), so the effective gain is about 3.32 dB for this code, which is still better than
the 4-state 2-dimensional 3 dB code with effective gain 3.01 dB.

EXAMPLE B.5.6 (Wei’s 16-state, rate 3/4, 8D Code) The code uses Λ = Z8 and
Λ′ = E8. The 16-state trellis is shown in Figure B.30. The labels for the various subsets are
as indicated on the tables in Section B.5.1. The minimum distance is given by d2

min = 4,

and r̄C = 1
8 + 0 = .125. Thus, the fundamental gain is

γf =
4

22·1/8 = 21.75 (5.27 dB) . (B.295)

This gain is better than for any other 16-state code studied. However, N̄e = 158, so the
effective gain is about 3.96 dB. There is a 64-state Wei code that is also γf = 5.27 dB, but
with N̄e = 30, so that γ̃f = 4.49 dB. This 64-state code (actually a differentially phase-
invariant modification of it) is used in some commercial (private-line) 19.2kbps voiceband
modems.

5Note that r̄Λ = 4/8 for Λ = E8.

557

0	 2	 4	 6	 	 	 8	 A	 C	 E	

1	 3	 5	 7	 	 	 9	 B	 D	 F	

3	 1	 7	 5	 	 	 B	 9	 F	 D	

2	 0	 6	 4	 	 	 A	 8	 E	 C	

4	 6	 0	 2	 	 	 C	 E	 8	 A	

5	 7	 1	 3	 	 	 D	 F	 9	 B	

6	 4	 2	 0	 	 	 E	 C	 A	 8	

7	 4	 3	 1	 	 	 F	 D	 B	 9	

8	 A	 C	 E	 	 	 0	 2	 4	 6	

9	 B	 D	 F	 	 	 1	 3	 5	 7	

A	 8	 E	 C	 	 	 2	 0	 6	 4	

B	 9	 F	 D	 	 	 3	 1	 7	 5	

D	 F	 9	 B	 	 	 5	 7	 1	 3	

C	 E	 8	 A	 	 	 4	 6	 0	 2	

E	 C	 A	 8	 	 	 6	 4	 2	 0	

F	 D	 B	 9	 	 	 7	 5	 3	 1	

Figure B.30: Trellis for Wei’s 16-state, rate 3/4, 8D code.

558

Λ Λ′ 2ν h4 h3 h2 h1 h0 d2
min γf (dB) N̄e γ̃f N̄D

Z4 R4D4 8 – – 02 04 11 4 23/2 4.52 22 3.82 22
D4 2D4 16 – 10 04 02 21 6 3 4.77 88 3.88 76
Z4 R4D4 16 – – 14 02 21 4 23/2 4.52 6 4.20 36
Z4 2Z4 32 – 30 14 02 41 4 23/2 4.52 2 4.52 122
D4 2D4 64 – 050 014 002 121 6 3 4.77 8 4.37 256
Z4 2D4 64 050 030 014 002 101 5 5√

2
5.48 36 4.65 524

Z4 2D4 128 120 050 022 006 203 6 6√
2

6.28 364 4.77 1020

Table B.11: Four-Dimensional Trellis Codes and Parameters

Λ Λ′ 2ν h4 h3 h2 h1 h0 d2
min γf (dB) N̄e γ̃f N̄D

E8 R8E8 8 – 10 04 02 01 8 27/4 5.27 382 3.75 45
E8 R8E8 16 – 10 04 02 21 8 27/4 5.27 158 4.01 60
Z8 E8 16 – 10 04 02 21 4 27/4 5.27 158 4.01 52
E8 2E8 16 r=4/8 -?- -?- -?- -?- 16 4 6.02 510 4.42 342
E8 R8E8 32 – 30 14 02 61 8 27/4 5.27 62 4.28 90
Z8 E8 32 – 10 04 02 41 4 27/4 5.27 62 4.28 82
E8 R8E8 64 – 050 014 002 121 8 27/4 5.27 30 4.49 150
Z8 E8 64 – 050 014 002 121 4 27/4 5.27 30 4.49 142
Z8 R8D8 128 120 044 014 002 101 8 27/4 5.27 14 4.71 516
E8 2E8 256 r=4/8 -?- -?- -?- -?- 16 4 6.02 30 5.24 1272

Table B.12: Eight-Dimensional Trellis Codes and Parameters

B.5.2.2 4D Code Table

Table B.11 is similar to Tables B.1 and B.3, except that it is for 4 dimensional codes. Table B.11 lists
up to rate 4/5 codes. The rate can be inferred from the number of nonzero terms hi in the table. The
design specifies Λ and Λ′ in the 4D case, which also appears in Table B.11. N̄1 and N̄2 are not shown
for these codes. N̄1 and N̄2 can be safely ignored because an increase in dmin in the tables by 1 or 2
would be very significant and the numbers of nearest neighbors would have to be very large on paths
with d > dmin in order for their performance to dominate the union bound for Pe.

B.5.2.3 8D Code Table

Table B.12 is similar to Tables B.1 and B.3, except that it is for 8 dimensional codes. Table B.12 lists
up to rate 4/5 codes. The rate can again be inferred from the number of nonzero terms hi in the table.
Table B.12 specifies Λ and Λ′ in the 8D case. N̄1 and N̄2 are also not shown for these codes, although
the author suspects that N̄1 could dominate for the Z8/R8D8 128-state code.

559

B.6 Theory of the Coset Code Implementation

This section investigates the simplification of the implementation of both the encoder and the decoder
for a multidimensional trellis code.

B.6.1 Encoder Simplification

The general coset-code encoder diagram is useful mainly for illustrative purposes. Actual implementa-
tions using such a diagram as a guideline would require excessive memory for the implementation of the
coset select and signal select functions. In practice, the use of two-dimensional constituent subsymbols
in Z2 is possible, even with codes that make use of more dense multidimensional lattices. All the lattices
discussed in this Chapter and used are known as binary lattices, which means that they contain 2ZN

as a sublattice. With such binary lattices, additional partitioning can enlarge the number of cosets so
that 2ZN and its cosets partition the original lattice ZN upon which the constellation was based. The
number of additional binary partitions needed to get from Λ′ to 2ZN is known as the informativity
of Λ′, k(Λ′). This quantity is often normalized to the number of dimensions to get the normalized
informativity of the lattice, κ̄(Λ) = k(Λ′)/N .

The addition of the extra partitioning bits to the coset code’s convolutional encoder and coset se-
lection creates a rate [k + k(Λ′)] / [k + k(Λ′) + rG] convolutional code that selects cosets of 2ZN . These
cosets can then be trivially separated into two-dimensional cosets of 2Z2 (by undoing the concatenation).
These 2D cosets can then can be independently specified by separate (reduced complexity and memory)
two-dimensional signal selects. Wei’s 16-state 4D code and 64-state 8D codes will illustrate this concept
for multidimensional codes.

4D Encoder with rate 2/3, and Z4/R4D4 An example is the encoder for a four-dimensional trellis
code that transmits 10 bits per 4D symbol, or b = 10. The redundant extra bit from G (rG = 1) requires
a signal constellation with 211 points in 4 dimensions. The encoder uses an uncoded constellation that is
the Cartesian product of two 32CR constellations. 32CR is a subset of Z2, and the uncoded constellation
would be a subset of Z4. A desirable implementation keeps the redundancy (extra levels) in the two 2D
constituent sub-symbols as small as practically possible. The extension of 32CR to what is called 48CR
appears in Figure B.31. 16 new points are added at the lowest 2D energy positions outside the 32CR
to form 48CR. The 32CR points are denoted as “inner” points and the 16 new points are denoted as
“outer” points. The Cartesian product of the two 48CR (a subset of Z4) with deletion of those points
that correspond to (outer, outer) form the coded constellation. This leaves 210 (inner, inner) points, 29

(inner, outer) points, and 29 (outer, inner) points for a total of 210 + 2 · 29 = 210 + 210 = 211 = 2048
points. The probability of an inner point occuring is 3/4, while the probability of an outer is 1/4. The
two-dimensional symbol energy is thus

Ex(two− dimensional) =
3

4
E32CR +

1

4
Eouter = .75(5) + .25(

2 · 12.5 + 12.5 + 14.5

4
) = 7 , (B.296)

so that Ēx = 7/2. The shaping gain for 48CR is then

γs =
22(1/4) · (25 − 1)

12 · (7/2)
=

43.84

42
= 1.0438 = .19 dB . (B.297)

The shaping gain of 32CR has already been computed as .14dB, thus the net gain in shaping is only
about .05dB - however, a nominal deployment of a two-dimensional code would have required 64 points,
leading to more constellation expansion, which might be undesirable. Since the code G is rate 2/3, the
3 output bits of G are used to select one of the 8 four-dimensional cosets, C4,0, ..., C4,7, and the 8
remaining bits would specify which of the parallel transitions in the selected C4,i would be transmitted,
requiring a look-up table with 256 locations for each coset. Since there are 8 such cosets, the decoder
would nominally need 8× 256 = 2048 locations in a look-up table to implement the mapping from bits
to transmitted signal. Each location in the table would contain 4 dimensions of a symbol. The large
memory requirement can be mitigated to a large extent by using the structure illustrated in Figure B.32.

560

ϕ	
1	 	

ϕ	
2	

r	 i	 g	 h	 t	 	 	 i	 n	 n	 e	 r	 	 	 p	 o	 i	 n	 t	 s	

o	 u	 t	 e	 r	 	 	 p	 o	 i	 n	 t	 s	

l	 e	 f	 t	 	 	 i	 n	 n	 e	 r	 	 	 p	 o	 i	 n	 t	 s	

0!1!

2! 3!

Figure B.31: 48 Cross constellation.

I	 n	 n	 e	 r	 /	 O	 u	 t	 e	 r	 	
	 l	 e	 f	 t	 /	 r	 i	 g	 h	 t	 	

	 S	 e	 l	 e	 c	 t	

 v 3 =	
v 3 +	
v 2 ;	 v 2 =	
 v 1 +	
v 0

 v 1 =	
v 3 ;	 v 0	 =	
 v 1

 u 1

 u 2

(b	 i	 n	 a	 r	 y	 	 	 l	 o	 g	 i	 c)	 v 3

 v 2

 v 1

 v 0

 v 1

 v 0

2	 D	 	 	 S	 i	 g	 n	 a	 l	 	
	 S	 e	 l	 e	 c	 t	

4	 :	 2	 	
	 m	 u	 x	

}	 1	

}	 2	

1	 s	 t	 /	 2	 n	 d	 	 	 	
	 s	 y	 m	 b	 o	 l	

(2	 D	 	 	 C	 o	 s	 e	 t)	

 v 2

 v 3

 u 3

(c	 o	 n	 v	 o	 l	 u	 t	 i	 o	 n	 a	 l	 	 	 e	 n	 c	 o	 d	 e	 r)	

(r	 =	 3	 /	 4	 	 	 c	 o	 n	 v	 o	 l	 u	 t	 i	 o	 n	 a	 l	 	 	 e	 n	 c	 o	 d	 e	 r)	

4	 :	 2	 	
	 m	 u	 x	

}	 1	

}	 2	

1	 s	 t	 /	 2	 n	 d	 	 	 	
	 s	 y	 m	 b	 o	 l	

 u 4

 u 5

 u 6

 s s 1

 s s 0

 s s 2

 s s 3

(2	 D	 	 	 i	 n	 /	 o	 u	 t)	

4	 :	 2	 	
	 m	 u	 x	

 u 7 u 8 u 9 u 1 0

6	 4	 	 	 l	 o	 c	 a	 t	 i	 o	 n	 s	 /	 	 	 4	 8	 	 	 u	 s	 e	 d	

4	 D	 	 	 s	 y	 m	 b	 o	 l	 	
	 c	 o	 n	 c	 a	 t	 e	 n	 a	 t	 i	 o	 n	 x m

(8	 	 	 l	 o	 c	 a	 t	 i	 o	 n	 s)	

H D() = D3 +D2 D D 4 +1!
"#

$
%&

1 2

Figure B.32: 4D coset-select implementation.

561

Input Bits 1st 2D subsym. 2nd 2D subsym.
u4 u5 u6 ss1 ss0 position ss3 ss2 position
0 0 0 0 0 left-inner 0 0 left-inner
0 0 1 0 0 left-inner 0 1 right-inner
0 1 0 0 0 left-inner 1 0 outer
0 1 1 0 1 right-inner 0 0 left-inner
1 0 0 0 1 right-inner 0 1 right-inner
1 0 1 0 1 right-inner 1 0 outer
1 1 0 1 0 outer 0 0 left-inner
1 1 1 1 0 outer 0 1 right-inner

Table B.13: Truth Table for 4D inner/outer selection (even b)

Because of the partitioning structure, each 4D coset of C4,0 can be written as the union of two Cartesian
products, for instance

C0
4 =

(
C0

2 ⊗ C0
2

)⋃(
C2

2 ⊗ C2
2

)
, (B.298)

as in Section B.5. Bit v3 specifies which of these two Cartesian products
(
C0

2 ⊗ C0
2

)
or
(
C2

2 ⊗ C2
2

)
contains the selected signal. These two Cartesian products are now in the desired form of cosets in 2Z4.
Thus, k(R4D

4) = 1. The four bits v0 ,..., v3 can then be input into binary linear logic to form v̄0 ,..., v̄3.
These four output bits then specify which 2D coset Ci2, i = 0, 1, 2, 3 is used on each of the constituent 2D
subsymbols that are concatenated to form the 4D code symbol. A clock of speed 2/T is used to control
a 4:2 multiplexer that chooses bits v̄0 and v̄1 for the first 2D subsymbol and the bits v̄2 and v̄3 for the
second 2D subsymbol within each symbol period. One can verify that the relations

v̄3 = v2 + v3 (B.299)

v̄2 = v0 + v1 (B.300)

v̄1 = v3 (B.301)

v̄0 = v1 (B.302)

will ensure that 4D coset, Ci4, with i specified by [v2, v1, v0] is correctly translated into the two constituent
2D cosets that comprise that particular 4D coset.

The remaining input bits (u4, ..., u10) then specify points in each of the two subsymbols. The in-
ner/outer/left/right select described in the Table B.13 takes advantage of the further separation of each
2D coset into 3 equal-sized groups, left-inner, right-inner, and outer as illustrated in Figure B.32. Note
the left inner and right inner sets are chosen to ensure equal numbers of points from each of the 4 two-
dimensional cosets. The outputs of this (nonlinear) bit map are then also separated into constituent 2D
subsymbols by a multiplexer and the remaining 4 bits (u7, u8, u9, u10) are also so separated. The final
encoder requires only 8 locations for the inner/outer selection and 64 locations (really only 48 are used
because some of the combinations for the ss (signal select) bits do not occur) for the specification of
each constituent subsymbol. This is a total of only 72 locations, significantly less than 2048, and only 2
dimensions of a symbol are stored in each location. The size of the 64-location 2D Signal Select is further
reduced by Wei’s observation that the 4 two-dimensional cosets can be generated by taking any one of
the cosets, and performing sign permutations on the two dimensions within the subsymbol. Further,
by storing an appropriate value (with signs) in a look-table, the necessary point can be generated by
permuting signs according to the two bits being supplied for each 2D subsymbol from the CS function.
Then the 2D signal selection would require only 16 locations, instead of 64. Then, the memory require-
ment would be (with a little extra logic to do the sign changes) 16+8=24 locations. We note b ≥ 6 and
b must be even for this encoder to work (while for b < 6 the encoder is trivial via look-up table with
2b+1 locations). For even b > 6, only the 2D Signal Select changes, and the memory size (using Wei’s

sign method to reduce by a factor of 4) is 4× 2
b−6

2 . For odd b, b+ 1 is even, the constellation is square,
and the inner/outer/left/right partitioning of the constituent 2D subsymbols is unnecessary.

562

ϕ1.

ϕ2

right-upper
inner points

outer points

right-lower
inner points

left-lower
inner points

left-upper
inner points

03

2 1

Figure B.33: 40 Cross constellation.

8D Encoder with rate 3/4, and Z8/E8 An encoder for b̄ = 2.5 and a 64-state eight-dimensional
trellis code transmits 20 bits per 8D symbol, or b = 20. The redundant extra bit from G (rG = 1) requires
a signal constellation with 221 points in 8 dimensions. The uncoded constellation is the Cartesian product
of four 32CR constellations. Note that 32CR is a subset of Z2, and our uncoded constellation would be a
subset of Z8. A desirable implementation keeps the redundancy (extra levels) in the two 2D constituent
sub-symbols as small as is practically possible. 32CR extends to what is called 40CR and shown in
Figure B.33. 8 new points are added at the lowest 2D energy positions outside the 32CR to form 40CR.
The 32CR points are denoted as “inner” points and the 8 new points are denoted as “outer” points. The
Cartesian product of the four 40CR (a subset of Z8) with deletion of those points that have more than
one outer point forms the 8-dimensional transmitted signal constellation. This leaves 220 (in, in, in, in)
points, 218 (in, in, in, out) points, 218 (in, in, out, in) points, 218 (in, out, in, in) points, and 218 (out,
in, in, in) points for a total of 220 + 4 · 218 = 220 + 220 = 221 = 2, 097, 152 points. The probability of
an inner point occuring is 7/8, while the probability of an outer is 1/8. The two-dimensional symbol
energy is thus

Ex =
7

8
E32CR +

1

8
Eouter = .875(5) + .125(12.5) = 5.9375 , (B.303)

so that Ēx = 5.9375/2. The shaping gain for 40CR is then

γs =
22(1/8) · (25 − 1)

12 · (5.9375/2)
=

36.8654

35.625
= .15 dB . (B.304)

The shaping gain of 32CR has already been computed as .14dB, thus the net gain in shaping is only
about .01dB - however, a nominal deployment of a two-dimensional code would have required 64 points,
leading to more constellation expansion, which may be undesirable. Since the code G is rate 3/4, the
4 output bits of G are used to select one of the 16 eight-dimensional cosets, C0

8 , ..., CF8 , and the 17
remaining bits would specify which of the parallel transitions in the selected Ci8 would be transmitted,
requiring a look-up table with 217 = 131, 072 8-dimensional locations for each coset. Since there are 16
such cosets, the encoder would nominally need 2,097,152 8-dimensional locations in a look-up table to

563

(r	 =	 3	 /	 4	 	 	 c	 o	 n	 v	 o	 l	 u	 t	 i	 o	 n	 a	 l	 	 	 e	 n	 c	 o	 d	 e	 r)	

v	 5	 =	
 v	 3	 +	
 v	 5	 ;	 v	 4	 =	
 v	 2	 +	
v	 4	
v	 3	 =	
 v	 0	 +	
v	 1	 ;	 v	 2	 =	
 v	 5	
v	 1	 =	
 v	 4	 ;	 v	 0	 =	
 v	 1	 +	
v	 4	

(b	 i	 n	 a	 r	 y	 	 	 l	 o	 g	 i	 c	 	 	 -‐	 	 	 l	 i	 n	 e	 a	 r)	

(r	 =	 5	 /	 6	 	 	 c	 o	 n	 v	 o	 l	 u	 t	 i	 o	 n	 a	 l	 	 	 e	 n	 c	 o	 d	 e	 r)	

 u	 1	
 u	 2	
 u	 3	

 u	 4	
 u	 5	

 v	 0	
 v	 1	
 v	 2	
 v	 3	

 v	 4	

 v	 5	

6	 :	 3	 	
	 m	 u	 x	

}	 1	

}	 2	

1	 s	 t	 /	 2	 n	 d	 	
	 4	 D	 	 	 s	 y	 m	 b	 o	 l	

2	 :	 1	 	
	 m	 u	 x	

 u	 6	

 u	 7	

c	 3	 =	
 c	 2	 +	
c	 3	 ;	 c	 2	 =	
 c	 0	 +	
 c	 1	
c	 1	 =	
 c	 3	 ;	 c	 0	 =	
 c	 1	

(b	 i	 n	 a	 r	 y	 	 	 l	 o	 g	 i	 c	 	 	 -‐	 	 	 l	 i	 n	 e	 a	 r)	

 v	 0	
 v	 1	
 v	 2	

 v	 3	
 v	 4	
 v	 5	

 c	 0	 c	 1	 c	 2	 c	 3	

1	 s	 t	 /	 2	 n	 d	 /	 3	 r	 d	 /	 4	 t	 h	 	
	 2	 D	 	 	 s	 y	 m	 b	 o	 l	

1	 {	

2	 {	
}	 1	

}	 2	

}	 3	

}	 4	

4	 :	 2	 	
	 m	 u	 x	

1	 2	 :	 3	 	
	 m	 u	 x	

i	 n	 n	 e	 r	 /	 o	 u	 t	 e	 r	 	
	 l	 e	 f	 t	 /	 r	 i	 g	 h	 t	 	
	 u	 p	 p	 e	 r	 /	 l	 o	 w	 e	 r	 	
	 s	 e	 l	 e	 c	 t	

(5	 1	 2	 	 	 l	 o	 c	 a	 t	 i	 o	 n	 s)	

 u	 8	
 u	 9	
 u	 1	 0	

 u	 1	 1	
 u	 1	 2	
 u	 1	 3	

 u	 1	 4	
 u	 1	 5	
 u	 1	 6	

 s	 s	 0	
 s	 s	 1	
 s	 s	 2	

 s	 s	 3	
 s	 s	 4	
 s	 s	 5	

 s	 s	 6	
 s	 s	 7	
 s	 s	 8	

 s	 s	 9	
 s	 s	 1	 0	
 s	 s	 1	 1	

2	 D	 	 	 S	 i	 g	 n	 a	 l	 	 	 S	 e	 l	 e	 c	 t	

4	 :	 1	 	 	 m	 u	 x	

 u	 1	 7	 u	 1	 8	 u	 1	 9	 u	 2	 0	

1	 s	 t	 /	 2	 n	 d	 /	 3	 r	 d	 /	 4	 t	 h	 	
	 2	 D	 	 	 s	 y	 m	 b	 o	 l	

(6	 4	 	 	 l	 o	 c	 a	 t	 i	 o	 n	 s	 ;	 	 	 4	 0	 	 	 a	 r	 e	 	 	 u	 s	 e	 d)	

8	 D	 	 	 S	 i	 g	 n	 a	 l	 	 	 C	 o	 n	 c	 a	 t	 e	 n	 a	 t	 i	 o	 n	

 x	 m	

 c	 3	
 c	 2	
 c	 1	
 c	 0	

H D() = D5 +D3 D3 +D2 D D6 +D 4 +1!
"#

$
%&

Figure B.34: 8D Coset Select Implementation

ss2 ss1 ss0 position
0 0 0 left-top-inner
0 0 1 left-bottom-inner
0 1 0 right-top-inner
0 1 1 right-bottom-inner
1 0 0 outer

Table B.14: Truth Table for inner/outer selection (even b)

implement the mapping from bits to transmitted signal. The large memory requirement can be mitigated
to a large extent by using the structure illustrated in Figure B.34. From the partitioning structure, each
8D coset of C0

8 can be written as the union of four Cartesian products, for instance

C0
8 =

(
C0

4 ⊗ C0
4

)⋃(
C2

4 ⊗ C2
4

)⋃(
C4

4 ⊗ C4
4

)⋃(
C6

4 ⊗ C6
4

)
, (B.305)

and each of these Cartesian products is a R4D4 sublattice coset. Bits u4 and u5 specify which of these
four Cartesian products contains the selected signal. The original convolutional encoder was rate 3/4,
and it now becomes rate 5/6. The six bits v0 ... v5 can then be input into a linear circuit with the
relations illustrated in Figure B.34 that outputs six new bits in two groups of three bits each. The first
such group selects one of the eight 4D cosets C0

4 ... C7
4 for the first 4D constituent sub-symbol and

the second group does exactly the same thing for the second constituent 4D subsymbol. The encoder
uses two more bits u6 and u7 as inputs to exactly the same type of linear circuit that was used for the
previous four-dimensional code example. We could have redrawn this figure to include u6 and u7 in the
convolutional encoder, so that the overall convolutional encoder would have been rate 7/8. Note that
k(E8) = 4 (u4, u5, u6, and u7). The nine bits u8 ... u16 then are used to specify inner/outer selection
abbreviated by Table B.14. The 9 output bits of this inner/outer selection follow identical patterns for
the other 2D constituent subsymbols. There are 512 combinations (44 + 4 · 43), prohibiting more than
one outer from occuring in any 8D symbol.

The final encoder requires only 512 locations for the “inner/outer/left/right/upper/lower” circuit,

564

and 64 locations (only 40 actually used) for the specification of each constituent subsymbol. This is a
total of only 552 locations, significantly less than 2,097,152, and each is only two-dimensional. Further
reduction of the size of the 64-location memory occurs by noting that the 4 two-dimensional cosets can
be generated by taking any one of the cosets, and performing sign permutations on the two dimensions
within the subsymbol. Then, the memory requirement would be (with a little extra logic to do the sign
changes) 528 locations.

B.6.2 Decoder Complexity

The straightforward implementation of this maximum likelihood sequence detector for 4D and 8D codes
can be very complex. This is because of the (usually) large number of parallel transitions between any
two pairs of states. In one or two dimensions with (possibly scaled) Z or Z2 lattices, the closest point to
a received signal is found by simple truncation. However, the determination of the closest point within
a set of parallel transitions that fall on a dense 4D or 8D lattice can be more difficult. This subsection
studies such decoding for both the D4 and E8 lattices. A special form of the Viterbi Algorithm can also
readily be used in resolving the closest point within a coset, just as another form of the Viterbi Algorithm
is useful in deciding which sequence of multidimensional cosets is closest to the received sequence.

Decoding the D4 Lattice By definition:

D4 = R4Z
4
⋃(

R4Z
4 + [0, 1, 0, 1]

)
(B.306)

=
(
R2Z

2 ⊗R2Z
2
)⋃(

(R2Z
2 + [0, 1])⊗ (R2Z

2 + [0, 1])
)

, (B.307)

which can be illustrated by the trellis in Figure B.18. Either of the two paths through the trellis
describes a sequence of two 2D subsymbols which can be concatenated to produce a valid 4D sym-
bol in D4. Similarly, upon receipt of a 4D channel output, the decoder determines which of the
paths through the trellis in Figure B.18 was closest. This point decoder can use the Viterbi Al-
gorithm to perform this decoding function. In so doing, the following computations are performed:

trellis position subsymbol (1 or 2) adds (or compares)
R2Z

2 1 1 add
R2Z

2 2 1 add
R2Z

2 + [0, 1] 1 1 add
R2Z

2 + [0, 1] 2 1 add
middle states – 2 adds

final state – 1 compare
Total 1 & 2 7 ops

The R4D4 Lattice has essentially the same lattice as shown in Figure B.35. The complexity for decoding
R4D4 is also the same as in the D4 lattice (7 operations).

To choose a point in each of the 8 cosets of Λ′ = R4D4 in a straightforward manner, the Viterbi
decoding repeats 8 times for each of the 8 cosets of R4D4. This requires 56 operations for the coset
determination alone. However, 32 operations are sufficient: First, the two cosets of D4 partition Z4 into
two parts, as illustrated in Figure B.36. The 2 dimensional cosets B2,0 and B2,1 for both the first 2D
subsymbol and the second 2D subsymbol are common to both trellises. Once the decoder has selected the
closest point in either of these two cosets (for both first subsymbol and again for the second subsymbol),
it need not repeat that computation for the other trellis. Thus, the decoder needs 7 computations to
decode one of the cosets, but only 3 additional computations (2 adds and 1 compare) to also decode
the second coset, leaving a total of 10 computations (which is less than the 14 that would have been
required had the redundancy in the trellis descriptions for the two cosets not been exploited).

Returning to R4D4, the 8 trellises describing the 8 cosets, Ci4, i = 0, ..., 7, used in a 4D (Z4/R4D4)
trellis code are comprised of 4 2D cosets (C0

2 , C1
2 , C2

2 and C3
2) for both the first 2D subsymbol and

for the second 2D subsymbol. The decoding of these cosets (for both subsymbols) thus requires 8
additions. Then the decoding performs 3 computations (2 adds and 1 compare) for each of the 8 trellises
corresponding to the 8 cosets, requiring an additional 24 computations. Thus, the total computation

565

2Z 2 2Z 2

2Z 2 + 1 1!
"#

$
%&

2Z 2 + 1 1!
"#

$
%&

Figure B.35: Trellis for the R4D4 Lattice

 B	 4	
0	 B	 4	

1	

 B	 2	
1	

 B	 2	
1	

 B	 2	
1	

 B	 2	
1	

 B	 2	
0	

 B	 2	
0	 B	 2	

0	

 B	 2	
0	

Figure B.36: Trellis for the two cosets of the D4 lattice

566

required to decode all 8 cosets is 32 computations. Normalized to 1 dimension, there are 8 computations
for all 8 cosets of the D4 lattice.

We can now return to the complexity of decoding the entire coset code. The complexity of decoding
using the Viterbi detector for the trellis code, after parallel transitions have been resolved is

ND(trellis) = 2ν
(
2k adds + 2k − 1 compares

)
. (B.308)

The overall complexity ND(C) is the sum of the complexity of decoding the 2k+rG cosets of Λ′ plus the
complexity of decoding the sequences of multidimensional codewords produced by the trellis code.

EXAMPLE B.6.1 (Wei’s 16-state 4D code, with r = 2/3) This code is based on the
partition Z4/R4D4 and thus requires 32 operations to decode the 8 sets of parallel transitions.
Also as k = 2 and 2ν = 16, there are 16(4+3) = 112 operations for the remaining 4D sequence
detection. The total complexity is thus 112 + 32 = 144 operations per 4D symbol. Thus
N̄D = 144/4 = 36, which was the corresponding entry in Table B.11 earlier.

The rest of the N̄D entries in the 4D table are computed in a similar fashion.

B.6.3 Decoding the Gossett (E8) Lattice

The decoding of an E8 lattice is similar to the decoding of the D4 lattice, except that it requires more
computation. It is advantageous to describe the decoding of the 16 cosets of E8 in Z8 in terms of the
easily decoded 2D constituent symbols.

The E8 lattice has decomposition:

E8 = R8D8

⋃
(R8D8 + [0, 1, 0, 1, 0, 1, 0, 1]) (B.309)

= (R4D4)
2
⋃

(R4D4 + [0, 0, 1,−1])
2

(B.310)⋃
(R4D4 + [0, 1, 0, 1])

2
⋃

(R4D4 + [0, 1, 1, 0])
2

, (B.311)

which uses the result
R8D8 = (R4D4)

2
⋃

(R4D4 + [0, 0, 1,−1])
2

. (B.312)

The trellis decomposition of the E8 in terms of 4D subsymbols as described by (B.311) is illustrated in
Figure B.20. The recognition that the 4D subsymbols in Figure B.20 can be further decomposed as in
Figure B.18 leads to Figure B.21. The coset leader [1,−1] is equivalent to [1, 1] for the “C-level” cosets
in two dimensions, which has been used in Figures B.20 and B.21.

The complexity of decoding the E8 lattice requires an addition for each of the 4 cosets of R2D2

for each of the 4 2D subsymbols, leading to 16 additions. Then for each of the (used) 4 cosets of
R4D4, decoding requires an additional (2 adds and 1 compare) leading to 12 computations for each 4D
subsymbol, or 24 total. Finally the 4D trellis in Figure B.20 requires 4 adds and 3 compares. The total
is then 16+24+7=47 operations.

All 16 cosets of the E8 lattice require 16 additions for the 4 2D C-level partitions, and 48 computations
for both sets (first 4D plus second 4D) of 8 cosets of R4D4 that are used, and finally 16(7)=112 compu-
tations for decoding all sixteen versions of Figure B.20. This gives a total of ND = 16 + 48 + 112 = 176,
or N̄D = 22.

EXAMPLE B.6.2 (Wei’s 64-state 8D code, with r = 3/4) This code is based on the
partition Z8/E8 and requires 176 operations to decode the 16 cosets of E8. Also with
k = 3 and 2ν = 64, there are 64(8 + 7) = 960 operations for the remaining 8D sequence
detection. The total complexity is thus 960 + 176 = 1136 operations per 8D symbol. Thus
N̄D = 1136/8 = 142, which was the corresponding entry in Table B.12 earlier.

B.6.4 Lattice Decoding Table

Table B.15 is a list of the decoding complexity to find
all the cosets of Λ′ in Λ.

567

Λ Λ′ |Λ/Λ′| ND N̄D
Z2 D2 2 2 1
Z2 2Z2 4 4 2
Z2 2D2 8 8 4
Z2 4Z2 16 16 8

Z4 D4 2 10 2.5
Z4 R4D4 8 32 8
Z4 2D4 32 112 28
Z4 2R4D4 128 416 104
D4 R4D4 4 20 5
D4 2D4 16 64 16
D4 2R4D4 64 224 56

Z8 D8 2 26 3.25
Z8 E8 16 176 22
Z8 R8E8 256 2016 257
Z8 2E8 4096 29504 3688
D8 E8 8 120 15
D8 R8E8 128 1120 140
D8 2E8 2048 15168 1896
E8 R8E8 16 240 30
E8 2E8 256 2240 280

Table B.15: Lattice Decoding Complexity for all Cosets of Selected Partitions

568

B.7 Various Results in Encoder Realization Theory

Convolutional codes can have many implementations, which correspond to different encoders that map
the same set of codewords with different input sequences. There is a rich theory that permits any
code’s realization with minimum number of delays (so minimizing decoder/trellis number of states),
with feedback-free encoder and decoder, or with systematic often-feedback-based encoder. The theory
in particular helps map r = n/(n+1) codes specified more efficiently by H(D) into minimal realizations.
The original theory is a masterpiece largely pioneered by G. David Forney at the coding world’s genesis.
The theory is not necessary for rate r = 1/2 or really any r = 1/n codes as they trivially minimize easily.
Modern codes often instead puncture r = 1/2 base codes to retain constant gap, and retaining the trivial
realization. This appendix, however, preserves and provides the theory for potential use. One advantage
is this theory allows circumvention of many publicly available decoder programs (for instance matlab’s
vitdec.m program with associated poly2trellis.m that exponentially increase the number of states in their
use with respect to the minimum necessary to decode. This appendix section provides a way to “spoof”
these programs into doing optimal decoding with a minimal number of states.

Subsection B.7.1 begins by providing the Invariant Factors Decomposition (IFD) of a finite-field
transfer function. This is the finite-field (and this Appendix really only handles binary convolutional
codes, but the extensions are self evident for the interested reader) equivalent of Smith Canonical Fac-
torization over a real (or complex) transfer function, the latter sometimes used by control theorists.
IFD creates a foundation for later subsections that provide methods to derive minimal feedback-free and
systematic-with-feedback realizations. The Smith-Canonical form also follows for those interested by
simply replacing the finite field GF2 with the field R or C (and perhaps the placeholder variable D with
the Laplace Transform variable s). Section B.7.2 covers the use of IFD to construct equivalent basic
and minimal encoders, which have minimum number of states and are feedback free, with feedback-free
inverses. Systematic realizations with minimal states, but possibly using feedback, also appear.

B.7.1 Invariant Factors Decomposition

This section presents the IFD algorithm that factors any encoder generator matrix G(D). This text has
immediate interest only sequences FD], which as in Section 8.1 is the ring of polynomial sequences with
coefficients in GF2. The process extends also later to sequences in the field Fr(D), which allows for
denominator polynomials (and thus feedback or ”IIR” filters that describe binary sequencies).

Definition B.7.1 [Invariant Factors Decomposition] The IFD of a k × n generator
matrix G(D) ∈ {F [D]}k×n is

G(D) = A(D) · Γ(D) ·B(D) , (B.313)

where the k×k matrix A(D) ∈ {F [D]}k×k is unimodulator so that |A(D)| = 1, as is similarly
the n×n matrix B(D) ∈ {F [D]}n×n with |B(D)| = 1. Γ(D) is a diagonal matrix of invariant
factors γi(D) ∈ F [D] along the diagonal.

The matrices A(D), and B(D), conform to a series of operations that replace any row, or column, with
a sum of it the present value and any multiple (in F [D]) of another row (column), as well as row and/or
column interchanges.

The IFD Algorithm:

1. Extract the least-common multiple, φ(D) of any denominator terms by forming G̃(D) = φ(D) ·
G(D), thus making the elements of G(D) polynomials in f [D].

2. Implement row and/or column switches to move the nonzero element with lowest degree (in D) to
the (1,1) position, and keep track of the operations.

3. Use the (1,1) entry together with row and column operations to eliminate (if possible) all other
elements in the first row and column. Use only polynomials in D; you may not be able to eliminate

569

the element, but still try to eliminate as much of it (in terms of Dk quantities) as possible. Keep
track of the operations here also.

An example that places “1” in the upper position with a row operation is[
D(

1 +D3
) · · · (D2)× row 1 + row 2 = D3 + (1 +D3) = 1

in (1,1) spot. – can’t do better.
(B.314)

4. If (1,1) entry is now not of the lowest degree in D, the IFD Algorithm return to step 2.

5. With the (1,1) entry now of lowest degree, the IFD algorithm repeats step 2 except that it now
moves next lowest degree term in D to (2,2). Then, the IVP repeats 3.

This (tedious) process, produces the matrix of invariants, Γ. It is the same procedure as is used to find
the Smith-Macmillan form of a transfer matrix for a MIMO linear system, however the author is unaware
of any present matlab (or other) software that implements this procedure in GF2 (The matlab Smith
Canonical software typically runs on real or complex coefficient transforms.). This section’s notational
simplification further drops the (D) on A, B, and Γ, but they each are implied functions of D with
elements in F [D]. N The row and column operations create the A matrix’ inverse through some finite
number, N , of successive left-side k × k matrix multiplications Li, i = 1, ..., N and another number, M ,
of successive right-side n × n matrix multiplications Rj , j = 1, ...,M . The elements of Li and Rj also
are in f [D].

LN · · ·L2 · L1 ·G ·R1 ·R2 · · ·RM = Γ . (B.315)

Therefore,
G = (LN · · ·L2 · L1)−1 · Γ · (R1 ·R2 · · ·RM)−1 = A · Γ ·B (B.316)

where A = (LN · · ·L2 · L1)−1 = L−1
1 L−1

2 · · ·L
−1
N and B = (R1R2 · · ·Rj)−1 = R−1

j R−1
j−1 · · ·R

−1
1 .

IFD Observations: Some IFD observations include:

1. (Li · · ·L2 · L1)−1 and (R1 · R2 · · ·Rj)−1 are unimodular because each Li and Rj is individually
unimodular, with determinant |Li| = |Rj | = 1; so the determinants of the products (· · ·L2 · L1)
and (· · ·R1 · R2) are also 1; consequently, the matrices A and B’s inverses exist and all elements
remain polynomials in F [D] via step 3’s allowed operations.

2. The IFD’s construction is thus G = A · Γ · B = (L−1
1 · · ·L

−1
i)Γ(R−1

j · · ·R
−1
1). A and B are not

unique, but Γ is unique for the given generator G.

3. Matrix inversions when elements are binary-coefficient polynomials are easy - just calculate the
determinants of the adjoints, since the denominator determinant is 1 (using Appendix C’s Cramer
Rule for inverse construction).

EXAMPLE B.7.1 [8-state rate 3/4 code] A rate r = 3/4 code has systematic generator

G(D) =

 1 0 0 0

0 1 0 D2

1+D3

0 0 1 D
1+D3

 =
1

1 +D3

 1 +D3 0 0 0
0 1 +D3 0 D2

0 0 1 +D3 D

 . (B.317)

(B.317)’s encoder G(D) immediately violates the f [D] elements constraint. Instead the
designer finds the IFD of

G̃(D) =

 1 +D3 0 0 0
0 1 +D3 0 D2

0 0 1 +D3 D

 , (B.318)

570

where eventually the 1+D3 factor may be divided from IFD results to return feedback to the
implementation, without code change. The term of lowest degree is D, so the IFD Algorithm
forms6 L1 to swap rows 1 and 3 and also R1 to swaps columns 1 and 4: i.e. 0 0 1

0 1 0
1 0 0

 · G̃(D)

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 = L1 · G̃ ·R1 =

 D 0 1 +D3 0
D2 1 +D3 0 0
0 0 0 1 +D3

The IFD Algorithm next eliminates the remaining entries in column 1 by using ⇒ row 2 →
row 2 + D row 1 or 1 0 0

D 1 0
0 0 1

︸ ︷︷ ︸

L2

·

 D 0 1 +D3 0
D2 1 +D3 0 0
0 0 0 1 +D3

︸ ︷︷ ︸

L1·G̃·R1

=

 D 0 1 +D3 0
0 1 +D3 D(1 +D3) 0
0 0 0 1 +D3

︸ ︷︷ ︸

L2·L1·G̃·R1

.

Now eliminate entries in row 1, by ⇒ column 3 → column 3 + D2 (not D
1+D3 , as we must

have a f [D] matrix) × column 1

=

 D 0 1 +D3 0
0 1 +D3 D(1 +D3) 0
0 0 0 1 +D3

︸ ︷︷ ︸

L2·L1·G̃·R1

·

1 0 D2 0
0 1 0 0
0 0 1 0
0 0 0 1

︸ ︷︷ ︸

R2

=

 D 0 1 0
0 1 +D3 D(1 +D3) 0
0 0 0 1 +D3

︸ ︷︷ ︸

L2·L1·G̃·R1·R2

IFD Algorithm then moves the (1,3) element to (1,1), since it is now the nonzero element
with lowest degree in D, so column 1 ↔ column 3:

L2 · L1 · G̃ ·R1 ·R2 ·

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

︸ ︷︷ ︸

R3

=

 1 0 D 0
D(1 +D3) 1 +D3 0 0

0 0 0 1 +D3

 (B.320)

⇒ row 2 → row 2 + D(1+D3) × row 1 and ⇒ column 3 → column 1 ·D + column 3 yields

G̃′ =

 1 0 0
D(1 +D3) 1 0

0 0 1

︸ ︷︷ ︸

L3

·

 1 0 D 0
D(1 +D3) 1 +D3 0 0

0 0 0 1 +D3

 ·

1 0 D 0
0 1 0 0
0 0 1 0
0 0 0 1

︸ ︷︷ ︸

R4

=

 1 0 0 0
0 1 +D3 D2(1 +D3) 0
0 0 0 1 +D3

 (B.321)

6Note that

L1 =

 0 0 1
0 1 0
1 0 0

 swaps rows 1 & 3 and R1 =

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 swaps columns 1 & 4 (B.319)

571

This completes (1,1) term portion. Continuing IFD Algorithm adds D2 times column 2 to
column 3 to complete the (2,2) element and then finally swaps columns 3 and 4.

G̃′′ =

 1 0 0 0
0 1 +D3 0 0
0 0 0 1 +D3

 ·

1 0 0 0
0 1 D2 0
0 0 1 0
0 0 0 1

︸ ︷︷ ︸

R5

·

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

︸ ︷︷ ︸

R6

=

 1 0 0 0
0 1 +D3 0 0
0 0 1 +D3 0

︸ ︷︷ ︸

Γ

. (B.322)

Therefore
Γ = L3 · L2 · L1 · G̃ ·R1 ·R2 ·R3 ·R4 ·R5 ·R6 (B.323)

with

L3 · L2 · L1 = L =

 0 0 1
0 1 D4

1 0 0

 and (B.324)

So

A = L−1 =

 0 0 1
D4 1 0
1 0 0

 (B.325)

Similarly
R1 ·R2 ·R3 ·R4 ·R5 ·R6 = R (B.326)

and

B = R−1 =

0 0 D3 D
0 1 D4 D2

1 0 0 0
0 0 D2 1

 (B.327)

G̃ = A·Γ·B =

 0 0 1
D4 1 0
1 0 0

 1 0 0 0
0 1 +D3 0 0
0 0 1 +D3 0

0 0 D3 D
0 1 D4 D2

1 0 0 0
0 0 D2 1

 (B.328)

Restoring the 1
1+D3 factor,

G =

 0 0 1
D4 1 0
1 0 0

 1
1+D3 0 0 0

0 1 0 0
0 0 1 0

0 0 D3 D
0 1 D4 D2

1 0 0 0
0 0 D2 1

 = AΓB (B.329)

EXAMPLE B.7.2 [Rate 2/3 code with no feedback]

G(D) =

[
1 D 0
D2 1 D

]
(B.330)

The IFD Algorithm executes col 2 ⇒ col 2 + D × col 1

G(D) ·

 1 D 0
0 1 0
0 0 1

︸ ︷︷ ︸

R1

=

[
1 0 0
D2 1 +D3 D

]
(B.331)

572

Then, row 2 ⇒ row 2 + D2 × row 1[
1 0
D2 1

]
︸ ︷︷ ︸

L1

·
[

1 0 0
D2 1 +D3 D

]
=

[
1 0 0
0 1 +D3 D

]
(B.332)

col 2 ⇒ col 3 [
1 0 0
0 1 +D3 D

]
·

 1 0 0
0 0 1
0 1 0

︸ ︷︷ ︸

R2

=

[
1 0 0
0 D 1 +D3

]
(B.333)

col 3 ⇒ col 3 + D2 × col 2[
1 0 0
0 D 1 +D3

]
·

 1 0 0
0 1 D2

0 0 1

︸ ︷︷ ︸

R3

=

[
1 0 0
0 D 1

]
(B.334)

col 2 ⇒ col 3 and col 3 ⇒ col 3 + D × col 2 provides

[
1 0 0
0 D 1

]
·

 1 0 0
0 0 1
0 1 0

︸ ︷︷ ︸

R4

·

 1 0 0
0 1 D
0 0 1

︸ ︷︷ ︸

R5

=

[
1 0 0
0 1 0

]
︸ ︷︷ ︸

Γ

L = L1 =

[
1 0
D2 1

]
so A = L−1

1 = L = L1 =

[
1 0
D2 1

]

R = R1 ·R2 ·R3 ·R4 ·R5 =

 1 D D3

0 1 D
0 D2 1 +D3

 and B = R−1 =

 1 D 0
0 1 +D3 D
0 D2 1

Therefore

G =

[
1 0
D2 1

] [
1 0 0
0 1 0

] 1 D 0
0 1 +D3 D
0 D2 1

 (B.335)

B.7.2 Canonical Realizations of Convolutional Encoders

Subsection B.7.1 earlier discussed equivalent encoders, for which the (output) codes were the same. Any
code can be realized by canonical encoders that have several useful properties:

1. G(D) has a feedback-free right inverse, G−1(D), an n × k matrix, such that G(D)G−1(D) = I,
that is, all entries of G−1(D) are in F [D]. This can be helpful if decoded sequences for another
encoder realization of the same code are available, So the receiver could re-encode them with the
old encoder, invert the output with the feedback-free inverse, and re-encode with the same-code,
but differernt mapping encoder, This is then MLSD result for the other new encoder without need
of another decoder. This can be helpful circumventing a limitation where a decoder was designed
for another encoder of the same code.

2. G(D) is feedback free (G(D) also has all entries in F [D]).

3. ν is a minimum, that is ν = µ.

573

This section reviews such encoders and provides the translation process of a non-canonical encoder
into canonical form. An encoder matrix G(D)’s IFD is central to its reduction to canonical form.
Subsection B.7.2.1 formalizes the existence of and provides further IFD examples.. The minimal encoder’s
realization uses a minimum number of delay elements. A minimal encoder will need to be delay preserving
(i.e. input sequences are not delayed), degree preserving (i.e., an interesting dual property to delay
preservation for sequences running backwards in time), and non-catastrophic – Subsection B.7.2.4 studies
these properties and proves the equivalence of these properties to a minimal encoder. The minimal
encoder’s construction is nontrivial and requires a two step procedure: The first step constructs the
basic as in Subsection B.7.2.5. The second step produces the minimal encoder from a basic encoder, as
in Section B.7.2.6. Systematic encoders can also be found with the possible need of feedback. Subsection
B.7.2.7 provides the canonical systematic encoder with feedback.

B.7.2.1 Invariant Factors

A polynomial matrix G(D)’s IFD is the finite-field version of the Smith Canonical Matrix form of basic
mathematics and signal processing. Here, IFD is for matricesG(D) ∈ {F [D]}k×n. It applies to nonsquare
matrices and provices the factorization A(D) · Γ(D) · B(D) where A and B have unit determinants
(unimodular). This differs from singular value decomposition where the F and M matrices, which
initially appear ivery similar toA andB, are unitary (a stronger restriction that simple unit determinant).
IFD’s diagonal invariant factors can be found in polynomial time with an exact algorithm (unlike
SVD). They represent the ratios of successive greatest common divisors of the original matrix’ submatrix
determinants, while the singular values require an iterative approximation algorithm to compute and
represent components of the matrix’ action on two linked orthonormal bases in a transformation from
a n-dimensional space to a k-dimensional space. The invariant factors themselves are less important in
coding than the resultant upper k rows of B that find a certain basic encoder with desirable properties.

While G(D) ∈ {F [D]}k×n, any G(D) with entries in Fr(D) transforms to another feedback-free
encoder by premultiplying the original generator by A = φ(D) · I (A ∈ F (D)), where φ(D) is the least
common multiple of all the original generator’s feedback (denominator) polynomials. This premultipli-
cation does not change the codewords generated by G(D). Again, notational simplification drops the D
from developments. Formally:

Theorem B.7.1 [Invariant Factors Theorem] Let G be a k×n matrix of polynomials
in F [D] of rank %G = k, then

G = AΓB (B.336)

where

1. A and B are square k× k and n× n F [D] matrices with unit determinants |A| = 1
and |B| = 1, respectively, that is they are unimodular.

2. A−1 and B−1 are also square F [D] matrices.

3. Γ is a k × n matrix with the following structure:

Γ =

γ1 0 ... 0 0 ... 0
0 γ2 ... 0 0 ... 0
...

...
. . .

...
...

. . .
...

0 0 ... γk 0 ... 0

 . (B.337)

4. γi ∈ f [D] are the unique invariant factors for G(D) and

γi =
∆i

∆i−1
. (B.338)

5. ∆i is the greatest common divisor (GCD) of all determinants of i × i submatrices
of G(D), with ∆0 = 1.

574

6. γi divides γi+1, that is γi is a factor of γi+1.

Proof: As in Subsection B.7.2.1’s examples, any unimodular A (B) comprise a prod-
uct of matrices that are equivalent to elementary row (column) operations of adding a
multiple (in F [D]) of one row (column) to another row (column). If G is not already
diagonal, let α and β be elements in the same column where α does not divide β (if it
always did, there would have to be a β in some other column that could be added to the
present column to make β not divisible by α, or the dimensionality would be less than
k, which violates our original restriction that %G = k; or the code would be a rate 1/n
code that can be trivially put into invariant-factors form). Let ∆ = GCD(α, β) be the
greatest common divisor of α and β.

The IFD Algorithm finds x and y, both in F [D], such that αx + βy = ∆, and does
elementary column and/or row interchanges (always unimodular) and then a unimodular
transformation (recalling that ∆ divides both α and β so β/∆ ∈ F [D] and α/∆ ∈ F [D]): x y 0

− β
∆

α
∆ 0

0 0 I

 α
β

 =

 ∆
0

 (B.339)

(the minus sign is needed only for GFq elements where q > 2.)

IF ∆ divides all other elements in the matrix (for instance if ∆ = 1, as it often does),
then zero the remainder of the first row and column with[

1 0

− β
∆ 1

] [
∆
β

]
or [∆ β]

[
1 − β

∆
0 1

]
transformations.
OTHERWISE, the above process until this occurs (see also Section B.7.2.1’s examples).

Eventually this step will produce a matrix of the form

Γ1 =

γ1 0 ... 0
0
...
0

G1

 . (B.340)

The IFD process repeats this recursively for G1, then G2, ... Gk.

The determinant of Γ first k columns is
∏k
i=1 γi. In order for all A and B matrices to

be unimodular, each successive GDC ∆i must be in any i× i determinant meaning that
this factor must be on the diagonal of Γ. As i increases the GCD can only increase
and must necessarily include as a factor the GCD for i− 1. Thus, the invariant factors
also represent the rations of the successive GCDs. Thus, results 1-6 follow from the
construction.QED.

It is possible to use Theorem B.7.1 to reduce the computation for smaller matrices, as per the
following example:

EXAMPLE B.7.3 [4-state r = 1/2 code] Returning to the earlier 4-state G = [1 +D+
D2 1 +D2] example, ∆0 = ∆1 = 1, so γ1 = 1:

G =
[
1 +D +D2 1 +D2

]
(B.341)

= [1] · [1 0] ·
[

1 +D +D2 1 +D2

a(D) b(D)

]
(B.342)

= A · Γ ·B . (B.343)

575

The values of a(D) and b(D) are such that |B| = 1. Furthermore, they need not be of
degree higher than ν. To constraint|A| = |B| = 1, let a(D) = a0 + a1 · D + a2 · D2 and
b(D) = b0 + b1 ·D + b2 ·D2. Then

a(D)
(
1 +D2

)
+ b(D)

(
1 +D +D2

)
= 1 . (B.344)

Equating terms in D0 ... D4 yields:

D0 : a0 + b0 = 1 or a0 = b̄0 , so let b0 = 0 a0 = 1 (B.345)

D1 : a1 + b0 + b1 = 0 or a1 = b1 , so let b1 = 1 a1 = 1 (B.346)

D2 : a0 + a2 + b0 + b1 + b2 = 0 or a2 = b2 , so let b2 = 0 a2 = 0 (B.347)

D3 : a1 + b1 + b2 = 0 , checks (B.348)

D4 : a2 + b2 = 0 , checks (B.349)

So then,
a(D) = 1 +D b(D) = D (B.350)

is a valid solution for the B matrix, and

G = A · Γ ·B = [1] · [1 0] ·
[

1 +D +D2 1 +D2

1 +D D

]
(B.351)

This example more rapidly computes the IFD. This can be the case for many situations. How-
ever, sometimes the regular method is necessary and clearly would better suit a computer-
program implementation.

Rate 1/n codes are somewhat trivial for IFD, so another is:

EXAMPLE B.7.4 [8-state rate 2/3 code revisited] Continuing with the 8-state, r =
2/3, convolutional code of Example B.7.2, ∆0 = ∆1 = ∆2 = 1, so γ1 = γ2 = 1 for the
generator matrix

G =

[
1 D 0
D2 1 D

]
(B.352)

=

[
1 0
0 1

]
·
[

1 0 0
0 1 0

]
·

 1 D 0
D2 1 D
a(D) b(D) c(D)

 (B.353)

The quantities a(D), b(D), and c(D) satisfy

c(D) + b(D) ·D +D
[
c(D) ·D2 +D · a(D)

]
= 1 . (B.354)

Let c(D) = 1 to satisfy the D0 constraint. Then

b(D) ·D +D3 +D2 · a(D) = 0 (B.355)

Then a solution is a(D) = 1 and b(D) = D2 +D, leaving

G =

[
1 0
0 1

]
·
[

1 0 0
0 1 0

]
·

 1 D 0
D2 1 D
1 D +D2 1

 (B.356)

The third example encoder cannot be decomposed by IVT directly because that 8-state, r = 3/4
encoder had feedback. This section extends the concept of invariant factors before proceeding to decom-
pose G with feedback. Multiplication by φ(D), as described earlier, clears the denominators (eliminates
feedback).

576

B.7.2.2 Extended Invariant Factors

Let a more general G(D) have rational fractions of polynomials as entries, that is the elements of G(D)
are in Fr(D). Then,

ϕ ·G = A · Γ̃ ·B (B.357)

where ϕ is the least common multiple of the denominators in G, thus permitting the invariant factors
decomposition as shown previously on ϕ ·G. Then

G = A
Γ̃

ϕ
B = A · Γ ·B , (B.358)

where Γ = Γ̃
ϕ is in Fr(D), but A and B are still in F [D]. We let

γi =
αi
βi

, (B.359)

where αi and βi are in F [D]. Since γi divides γi+1, then αi divides αi+1 and βi+1 divides βi.

EXAMPLE B.7.5 [Return to Example B.7.1’s 8-state 3/4 code with feedback]
Returning to the third earlier example,

G =

 1 0 0 0

0 1 0 D2

1+D3

0 0 1 D
1+D3

 (B.360)

Since u3(D) = v4(D), the nontrivial portion of the encoder simplifies to have generator

G =

[
1 0 D2

1+D3

0 1 D
1+D3

]
(B.361)

The LCM of the denominators is ϕ = 1 +D3, so

G̃ = ϕG =

[
1 +D3 0 D2

0 1 +D3 D

]
. (B.362)

The GCD’s for G̃ are
∆̃0 = ∆̃1 = 1 , ∆̃2 = 1 +D3 , (B.363)

and
γ̃1 = 1 , γ̃2 = 1 +D3 . (B.364)

So,

Γ̃ =

[
1 0 0
0 1 +D3 0

]
(B.365)

If the bottom row of G̃ is proportional to 1 +D3, it could be factored. Thus, adding D times
the bottom row to the top row and interchanging rows accomplishes this proportionality:

G̃1 = A1 · G̃ =

[
0 1
1 D

]
· G̃ =

[
0 1 +D3 D

1 +D3 D(1 +D3) 0

]
. (B.366)

Then

G̃1 =

[
1 0
0 1

]
·
[

1 0 0
0 1 +D3 0

]
·

 0 1 +D3 D
1 D 0
a b c

 (B.367)

For unimodular B,
D · c+ (1 +D3) · c+D · (b+ a ·D) = 1 (B.368)

577

and c = 1 +D, b = 1, a = D(1 +D) is a solution. Then, G̃ = A−1
1 G̃1

G̃ =

[
D 1
1 0

]
·
[

1 0 0
0 1 +D3 0

]
·

 0 1 +D3 D
1 D 0

D(1 +D) 1 1 +D

 (B.369)

or that

G =

[
D 1
1 0

]
·
[

1
1+D3 0 0

0 1 0

]
·

 0 1 +D3 D
1 D 0

D(1 +D) 1 1 +D

 (B.370)

The rate 3/4 G with feedback is

G =

 1 0 0
0 D 1
0 1 0

 ·
 1 0 0 0

0 1
1+D3 0 0

0 0 1 0

 ·

1 0 0 0
0 0 1 +D3 D
0 1 D 0
0 D(1 +D) 1 1 +D

 . (B.371)

IFD form requires reversal of the first and second diagonal entries to:

G =

 0 1 0
D 0 1
1 0 0

 ·
 1

1+D3 0 0 0

0 1 0 0
0 0 1 0

 ·

0 0 1 +D3 D
1 0 0 0
0 1 D 0
0 D(1 +D) 1 1 +D

 . (B.372)

Scrambler Interpretation of the Invariant Factors Decomposition of G Figure B.37 illustrates
the IFD’s physical interpretation.

𝐴
𝑘	×	𝑘

scrambler

0

0

⋮
𝒖 𝐷 	
𝑘 bits 𝒗 𝐷 	

𝑛 bits
⋮

𝛾!
𝛾"
⋮
𝛾#

⋮

⋮

𝐵
𝑛	×	𝑛

scrambler

⋮

⋮

Figure B.37: Scrambler interpretation of IVT.

The input uk can be any k-dimensional sequence of bits and since A is nonsingular, its output can
also be any k-dimensional sequence - all the A matrix does is “scramble” the input bits, This scrambling
does otherwise does not affect the code. The matrix Γ matrix also remaps input sequences in 1-to-1
fashion, but does not change the code. Thus a feedback-free encoder sits in the first k rows of B, call
it Gb. Additionally, since B−1 ∈ F [D], the first k columns of B−1 constitute a feedback-free inverse for
Gb.

The effect of additional unitary factors in the matrix B only ffects the input input mapping to the
n-dimensional axes of the codewords, but otherwise the most critical code parameters, the distances
between codewords and the number of codewords at each distance, remain the same. However, the
profile of number of input bit errors b corresponding to distance d N(b, d) can change. As long as

578

the encoder remains noncastasrophic (and Gb(D) will always be so, see upcoming Theorem B.7.2), the
change is almost never of practical consequence with noncatasrophic encocders.

More simply put, an MLSD decoder result û(D) for noncatastrophic encoder G(D) maps to v̂(D)
through v̂(D) = û(D) ·G(D); which, if the corresponding inputs for another noncastastrophic encoder
Gb(D) that corresponds to this same code is desired would be simply ûb(D) = v̂(D) ·G−1

b (D).

B.7.2.3 Tests for a Noncatastrophic Code:

The following theorem describes three equivalent tests for a noncatastrophic test that derive from the
invariant factors decomposition (and avoid searching the state transition diagram for distance-zero loops):

Theorem B.7.2 [Catastrophic Tests] The following four statements are equivalent:

1. An encoder corresponding to a k × n generator G(D) is noncatastrophic.

2. The numerators αi, i = 1, ..., k of the invariant factors γi are of the form Dm, m ≥ 0 ∈
Z, (powers of D).

3. The greatest common divisor of the k × k determinants of ϕ · G(D) is equal to Dδ for
some δ ≥ 0.

4. G−1(D) is feedback free.

Proof:
(1) ⇒ (2): By contradiction, assume αk 6= Dm, then let u(D) = γ−1

k · ek · A−1, where
ek = [0 , ..., 0 1], which is an input sequence of necessarily infinite weight. Then, u(D) ·
G(D) = ek ·B is of finite weight (since B ∈ F [D]), and thus by contradiction αk = Dm.
(2) ⇒ (3): The proof follows directly from the definition of αi, because these determinants
are products of teh αi.
(3) ⇒ (4): G−1 = B−1 · Γ−1 · A−1. Since B−1, A−1 have all elements in F [D], they are
feedback free, and since α = Dm, then Γ−1 is also feedback free.
(4)⇒ (1): If we take any finite weight code sequence v(D) and apply to the inverse invariant
factors, v(D) · B−1 · Γ−1 · A−1 ∈ F [D], then we must have a corresponding input of finite
weight.
QED.

B.7.2.4 Minimal Encoders

A minimal encoder, G(D) ∈ F [D], has a minimum number of delay elements in the obvious realization.
A minimal encoder is generated by finding an equivalent encoder that has the property that all its
elements are in F [D]. A more physical interpretation of the minimal encoder is that it preserves the
length (noncatastrophic, finite → finite, infinite → infinite), as well as degree and delay of a sequence.
The justification for this assertion will become more clear as this section proceeds.

A precise definition of a delay-preserving convolutional encoder follows:

Definition B.7.2 [Delay-Preserving Generator] A delay-preserving generator
has for any u(D) ∈ {F [D]}k, del(u) = del(uG) for any finite-weight sequence.

The constant matrix G0 = G(0) corresponding to the zeroth power of D in G(D) must be nonzero
to preserve delay. More formally:

Lemma B.7.1 [Delay Preservation Lemma] The following are equivalent state-
ments for an encoder G(D) in F [D], or G(D) =

∑ν
m=0Gm ·Dm:

1. For any u(D) ∈ {F [D]}k, del(u) = del(uG). del(u) = del(uG) ∀ u(D) ∈ Fk.

579

2. The k × n matrix of constant coefficients, G0 = G(0), has rank k.

3. G(D) has a causal right inverse, G−1(D), in F [D].

Proof:
(1) ⇒ (2): Proof by contradiction assumes that the rank of G0 is less than k. Then
there exists a constant sequence u(D) = u0 such that u0G0 = 0. Then, 0 = del(u0) 6=
del(u0G(D)) = 1, which is a contradiction; so thus G0 must be of full rank k.
(2) ⇒ (3): The rank-k G0 augments to an n × n constant matrix Ḡ0 that is of rank n
by adding appropriate constant rows to the bottom of G0. Then, these same rows add
to the bottom of G(D) to get Ḡ(D), which is Ḡ(D) = Ḡ0 + D · Ḡ′(D), where Ḡ′(D)
is some n × n matrix with entries in F [D]. Ḡ(D) has a simple matrix inverse given by

Ḡ−1(D) =
(
In +D · Ḡ−1

0 · Ḡ′(D)
)−1 · Ḡ−1

0 , which is a matrix with no factors of D in
the denominator, so it must therefore be causal (starts at time zero or after). Thus, the
first k columns of Ḡ−1(D) form a causal right inverse for G(D). (Note the last (n− k)
columns form a causal parity matrix H(D) also).
(3)⇒ (1): If G(D) has a causal right inverse G−1(D), then u(D)·G(D)·G−1(D) = u(D).
Since G−1(D) is causal, it cannot reduce the delay, so that del(u) = del(uG).
QED.

The degree-preserving property of a generator G(D) is similar to delay preservation, but reverses
time through

G̃(D−1)
∆
=

D−ν1 0 ... 0

0 D−ν2 ... 0
.
0 0 ... D−νk

 ·G(D) =

ν∑
m=0

G̃m ·D−m . (B.373)

The quantity νi is the same for both G(D) and G̃(D−1), i = 1, ..., k, and the entries in G̃(D−1) are in
F [D−1], if the entries in G(D) are in F [D].

Definition B.7.3 [Degree-Preserving Generator] A degree-preserving genera-
tor is such that that for all finite-length u(D),

deg(u ·G) = max
1≤j≤k

[deg(uj) + νj] . (B.374)

This leads to a similar reverse-time lemma:

Lemma B.7.2 [Degree-Preservation Lemma] The following are equivalent state-
ments for an encoder G̃(D−1) in F [D−1], for which G̃(D) =

∑ν
m=0 G̃m ·D−m, as above:

1. G̃(D−1) preserves the degree of finite-weight sequences, deg(u) = deg(uG̃)
∀ u(D) ∈ {F [D−1]}k.

2. The k × n matrix of constant coefficients, G̃0, has rank k.

3. G̃(D−1) has an anticausal right inverse, G̃−1(D−1), in F [D−1].

Proof: Essentially the same as for Lemma B.7.1.

The conditions necessary for a minimal encoder are:

580

Theorem B.7.3 [Minimal Encoders] An encoder G(D) is minimal, ν = µ if and
only if all three of the following conditions are met:

1. G(D) is delay preserving (or G0 has rank k).

2. G(D) is degree preserving (or G̃0 has rank k).

3. G(D) is non-catastrophic.

Proof:
First, a minimal encoder must satisfy the theorem’s 3 conditions:
condition 1: (by contradiction). If the rank of G0 is less than k, then ∃ u0, a constant
vector, such that u0 · G0 = 0. For those rows of G(D) corresponding to nonzero
elements of the constant vector u0, let j correspond to the the one with largest degree,
νj . Transformation replaces row j of G(D) by any linear combination of rows in G(D)
that includes row j. The linear combination is D−1 · u0 · G(D) reduces the degree of
this row and yet still produces an equivalent encoder. Thus, the original encoder could
not have been minimal, and by contradiction, G(D) must be delay preserving.

condition 2: (by contradiction). Assume the rank of G̃0 is less than k, then
∃ u0, a constant vector, such that u0 · G̃0 = 0. For those rows of G̃(D) corre-
sponding to nonzero elements of the constant vector u0, let j correspond to the
the one with largest degree, νj . Row j in G(D) can be replaced by any linear
combination of rows in G(D) that includes a nonzero multiple of row j. An input
ũ(D) = [uk,0 ·Dνj−ν1 uk−1,0 ·Dνj−ν2 ... u1,0 ·Dνj−νk] has elements in F [D]. The
linear combination ũ(D) · G(D) is an n-vector in F [D] of degree no more than νj − 1.
The replacement of row j in G(D) by this n-vector reduces the complexity of the
encoder G(D), but still maintains an equivalent encoder. Thus, the original encoder
could not have been minimal, and by contradiction, G(D) must also be degree preserving.

condition 3: (by contradiction). Let u(D) be some infinitely long sequence that
produces a finite-length output v(D) = u(D) ·G(D). Then, v(D) =

∑s
m=r vm ·Dm. If

some nonzero elements of u(D) have finite length, then these elements could only affect
a finite number of output codewords (since G(D) ∈ F [D]) so that these codewords could
not change the output v(D) to be of infinite length (or weight). Thus, this proof can
ignore all nonzero elements of u(D) that have finite weight or length. For those rows
of G(D) corresponding to nonzero elements of the constant vector u0 = u(D) |D=0,
again let j correspond to the the one with largest degree, νj . The successive removal
of finitely many terms ur · Dr, ur+1 · Dr+1, ...uτ · Dτ by altering the input sequence
produces a corresponding output codeword v′(D) such that deg(v′) < νj (that is “the
denominator” of u(D) must cancel the “numerator” of G(D) exactly at some point,
so that degree is reduced). The replacement of row j by this codeword produces an
encoder with lower complexity, without changing the code. Thus, the original encoder
could not have been minimal, and by contradiction, a minimal encoder must also be
non-catastrophic.

Second, the 3 conditions are sufficient to ensure a minimal encoder. When conditions 1,2,
and 3 apply, len(gi) = deg(gi)−del(gi)+1 = νi+1 (gi(D) is the row vector corresponding
to the ith row of G(D)), since del(gi) = 0. Also, len(uG) = max1≤j≤k [len(uj) + νj].
Since the minimal encoder, call it Gmin, is equivalent to G, then Gmin(D) = A ·G(D),
where A is an invertible matrix with entries in F [D]. The ijth entry (row i, column j)
is aij(D), and the ith row of A is ai(D). Then, for any row i of Gmin(D)

len(gmin,i) = len(ai ·G) = max
1≤j≤k

[len(aij) + νj] ≥ max
j

(νj) (B.375)

581

from summing over i, then µ ≥ ν; but since Gmin is already minimal, µ = ν, and
therefore G(D) is minimal. QED.

B.7.2.5 Basic Encoders

Basic encoders are as an intermediate step to deriving a minimal encoder.

Definition B.7.4 [Basic Encoder Properties] An encoder is a basic encoder if

1. G(D) preserves delay for any u(D) ∈ Fk.

2. If v(D) ∈ (F [D])
n

and finite weight, then u(D) ∈ (F [D])
k

and wH(u) is finite
(that is the code is not catastrophic).

A minimal encoder is necessarily basic. A basic encoder is minimal if the encoder preserves degree.
Through the following theorem, a basic encoder has αk = 1, the numerator of the last invariant factor
γk is one). αk = 1 also implies that αi = 1, i = 1, ..., k.

Theorem B.7.4 [Basic Encoders] An encoder is basic if and only if αk = 1 in the
invariant factors decomposition.
Proof: First, if αi = 1, then the encoder is basic: When αi = 1, then γ−1

i = βi ∈ F [D],
and therefore G−1 = B−1 ·Γ−1 ·A−1 has entries in F [D] (that is a feedback-free inverse).
Then for any finite weight v(D), then v(D) · G−1(D) = u(D) must also be of finite
weight, so that the encoder is non-catastrophic. If G(D) is not delay preserving, then
there exists a u0 such that u0 ·G0 = u0 · A0 · Γ0 · B0 = 0, and at least one αi must be
zero. Thus, by contradiction, G(D) is delay preserving.

Second, if the encoder is basic, then αi = 1. Proof by contradiction assumes αk 6= 1, and
then either αk = Dm m > 0 or αk = 1+α′(D) with α′(D) 6= 0. In either case, a possible
input is u(D) = γ−1

k εkA
−1, where εk = [0 , ..., 0 1]. If αk = 1+α′, then wH(u) =∞, but

u(D)G(D) = bk ∈ F [D], so the encoder is catastrophic. Thus, by contradiction in this
case, then α 6= 1+α′. If αk = Dm, and noting that the last row of A−1 must have at least
one term with degree zero (otherwise |A| 6= 1), then del(u) = −m, m > 0. However,
the corresponding output bk can have delay no smaller than 0, so by contradiction (with
the delay-preserving condition) m = 0. Thus, as both possibilities for αk 6= 0 have been
eliminated by contradiction, αi = 1. QED.

The following theorem shows that every convolutional encoder is equivalent to a basic encoder.

Theorem B.7.5 [Basic Encoder Equivalent] Every encoder G is equivalent to a
basic encoder. Proof: With IFD G(D) = A(d) · Γ(D) · B(D) and the ith row of B as
bi(D), any particular codeword v(D) such that (to avoid confusion, the function of D

582

notation returns to all quantities in this proof)

v(D) = u(D) ·G(D) (B.376)

= (u(D) ·A(D) · Γ(D) ·B(D) (B.377)

=

n∑
i=1

(u(D) ·A(D) · Γ(D))i · bi(D) (B.378)

=

k∑
i=1

(u(D) ·A(D) · Γ(D))i · bi(D) (B.379)

= u′(D) ·G(D) (B.380)

since (u(D) ·A(D) · Γ(D))i = 0 ∀ i > k. Since this is true for any v(D), the original
code is equivalent to G′(D), a basic encoder with IFD I · [I 0] ·B(D).

Conversely, G′ is equivalent to the original encoder follows from G by writing v′(D) =
u(D) ·G′ = [u′(D)(0...0]B. Thus v1(D) = (u0(D) ·A(D) ·Γ(D)) ·B(D) = u(D) ·G(D),
where u(D) = u′(D) · Γ−1(D) ·A−1(D). QED.

Essentially, the last theorem extracts the top k rows of B in the invariant factors decomposition to
obtain a basic equivalent encoder. Also, the last (n − k) columns of B−1 form a parity matrix for the
code.

B.7.2.6 Construction of Minimal Encoders

Minimal encoder construction follows from the basic encoder is contained within the proof of the following
result:

Theorem B.7.6 [Minimal Encoder Construction] Every basic encoder G ∈
{F [D]}k×n is equivalent to the minimal encoder Gmin through a transformation A such
that |A| = 1 (A is unimodular).
Proof: Formation of a minimal encoder from a basic encoder requires the additional
property that G̃0 has rank k. If this property is not yet satisfied by the basic encoder,
then there exists fu0, a constant vector, such that u0 · G̃0 = 0. Among all rows of G(D)
that correspond to nonzero components of u0, let j correspond to the one with largest
degree. The replacement of gj(D) by

∑k
i=1 ui,0 ·Dνj−νi · gi(D) produces a new gj that

has degree less than νj . This replacement can be performed by a series of row operations

with |A| = 1. This replacement process continues until the resulting G̃0 has full rank k.
QED.

When G̃0 has full rank k, all k× k determinants in G̃0 are nonzero. TheA operations need recording
if a final ûmin(D) → û(D) mapping is desired. The Minimal-Encoder Construction Theorem basically
states that the maximum degree of all the k × k determinants of G(D) is equal to µ, when G(D) is
minimal. Since these determinants also are invariant to elementary row and column operations, then
µ = max degree of the k × k determinants in any basic encoder. This also tells us the number of times
(ν − µ) that the reduction procedure in the previous proof may have to be applied before we obtain a
full rank G̃0. This later result (k × k determinants) is sometimes quicker to check than forming G̃ and
finding G̃0. The parity matrix forms a dual code, and if we also find the minimal realization of the dual
code, then the degree of the minimal generator Hmin(D), which is also the parity matrix must be the
same as the degree of Gmin(D).

583

𝐷
n=1

𝑢! 𝐷

𝑢" 𝐷

𝑢!.#

𝑢$.# 𝑣!.#
𝑣! 𝐷

𝑣%.#

𝑣$.#

𝑣# 𝐷

𝑣" 𝐷

⨁⨁
𝑢$.#&$

𝑢!.#&$
𝐷 𝐷

⨁⨁

𝜈 = 2

𝜇 = 1
𝐺 𝐷 = 1 + 𝐷 𝐷 1

𝐷 1 + 𝐷 0
𝜇 = 1

𝜈 = 1

𝐺 𝐷 = 1 1 1
𝐷 1 + 𝐷 0

nonminimal encoder
equivalent minimal encoder

𝑢! 𝐷

𝑢" 𝐷

𝑢!.#

𝑢$.#

𝑣" 𝐷
𝑣$.#

𝑣%.# 𝑣# 𝐷

𝑣!.#
𝑣! 𝐷⨁

⨁

Figure B.38: Example 1 - a non-minimal encoder.

As an example, consider the encoder in Figure B.38. There,

G =

[
1 +D D 1
D 1 +D 0

]
. (B.381)

For this encoder, ν = 2, but that µ = 1 (from rank of G̃0 = 1, indicating that this basic encoder is not
minimal. Thus,

G̃ =

[
1 +D−1 1 D−1

1 1 +D−1 0

]
, (B.382)

and the linear combination for G̃0 is f = [1 1] (adding the rows) produces f · G̃ = [D−1 D−1 D−1]. The
replacement of G̃ by

G̃ =

[
D−1 D−1 D−1

1 1 +D−1 0

]
, (B.383)

and conversion to Gmin, by multiplying by D, produces

Gmin =

[
1 1 1
D 1 +D 0

]
. (B.384)

Figure B.38 shows the corresponding minimum equivalent encoder.
Another example is

G =

[
1 D 0
0 1 +D3 D

]
, (B.385)

which is basic, but ν = 4 and µ = 3. Note this example is illustrated in Appendix ??, as the alternative
“Smith Canonical Form” of Example (??) in this chapter. Then,

G̃ =

[
D−1 1 0

0 1 +D−3 D−2

]
, (B.386)

and again f = [1 1] so that fG̃ = [D−1 D−3 D−2] and thus our new G̃ is

G̃ =

[
D−1 1 0
D−1 D−3 D−2

]
, (B.387)

leaving a minimal encoder

G =

[
1 D 0
D2 1 D

]
, (B.388)

584

with µ = ν = 3, which was the original encoder! The two f form[
1 1
0 1

]
·
[

1 0
1 1

]
=

[
0 1
1 1

]
(B.389)

so then

û(D) = ûmin ·
[

0 1
1 1

]
. (B.390)

Example B.7.2 had encoder

G =

 0 1 +D3 0 D
1 0 0 0
0 D4 1 D2

 , (B.391)

which is non-minimal with ν = 7 and µ = 3. Here

G̃ =

 0 1 +D−3 0 D−2

1 0 0 0
0 1 D−4 D−2

 , (B.392)

and f = [1 0 1] and f · G̃ = [0 D−3 D−4 0]. The new G̃ is then

G̃ =

 0 1 +D−3 0 D−2

1 0 0 0
0 D−3 D−4 0

 , (B.393)

(where the factor D−3 could be divided from the last row by returning to G through multiplication by
D7, and then realizing that the encoder is still not minimal and returning by multiplying by D4) and
another f = [1 0 1] with fG̃ = [0 D−3 D−1 D−2]. The final G̃ is then

G̃ =

 0 D−3 D−1 D−2

1 0 0 0
0 1 D−1 0

 , (B.394)

leaving the final minimal encoder as

G =

 0 1 D2 D
1 0 0 0
0 D 1 0

 , (B.395)

for which µ = ν = 3, which is not the same as our minimal encoder for this example in Section ??, but
is nevertheless equivalent to that encoder.

B.7.2.7 Canonical Systematic Realization

Every encoder is also equivalent to a canonical systematic encoder, where feedback may be necessary to
ensure that the encoder realization is systematic. Systematic codes are (trivially) never catastrophic.

The canonical systematic encoder is obtained by following these 3 steps:

1. Find the minimal encoder

2. Every k × k determinant cannot be divisible by D (otherwise G0 = 0, and the encoder would not
be minimal) – find one that is not.

3. Premultiply Gmin by the inverse of this k × k matrix.

585

Example B.7.2 returns so where

G =

[
1 D 0
D2 1 D

]
. (B.396)

The first two columns are

M =

[
1 D
D2 1

]
with inverse M−1 =

[
1 D
D2 1

]
1 +D3

, (B.397)

so that Gsys = M−1 ·Gmin, or

Gsys =
1

1 +D3
·
[

1 +D3 0 D2

0 1 +D3 D

]
=

[
1 0 D2

1+D3

0 1 D
1+D3

]
. (B.398)

The rate 3/4 encoder follows as

G =

 0 1 D2 D
1 0 0 0
0 D 1 0

 . (B.399)

With the left-most 3× 3 matrix as M , then

M−1 =
1

1 +D3
·

 0 1 +D3 0
1 0 D2

D 0 1

 . (B.400)

Then

Gsys =
1

1 +D3
·

 0 1 +D3 0
1 0 D2

D 0 1

 0 1 D2 D
1 0 0 0
0 D 1 0

 (B.401)

=
1

1 +D3
·

 1 +D3 0 0 0
0 1 +D3 0 D
0 0 1 +D3 D2

 (B.402)

=

 1 0 0 0
0 1 0 D

1+D3

0 0 1 D2

1+D3

 . (B.403)

EXAMPLE B.7.6 [Best 8-state r = 2/3 code with feedback, starting only with parity ma-
trix] Best rate r = k/(k + 1) convolutional codes often appear in tables with the simpler
specification of their 1/(k + 1) parity matrices, when k > 1. The parity matrix for the best
8-state r = 2/3 encoder is

H(D) =
[
1 +D +D2 +D3 1 +D2 +D3 1 +D +D3

]
(B.404)

or

[
1 +D +D2 +D3

1 +D +D3

1 +D2 +D3

1 +D +D3
1

]
. (B.405)

Then

Gsys =

[
1 0 1+D+D2+D3

1+D+D3

0 1 1+D2+D3

1+D+D3

]
(B.406)

Conversion in the straightforward manner of multiplying the systematic Gsys(D) matrix by
the denominator polynomial creates a basic code, but with excessive complexity.

586

A−1 G B−1

[
1 0
0 1

] [
1 + D + D3 0 1 + D + D2 + D3

0 1 + D + D3 1 + D2 + D3

] 1 0 0
0 1 0
0 0 1

row 1 + row 2 → row 1[

1 1
0 1

] [
1 + D + D3 1 + D + D3 D

0 1 + D + D3 1 + D2 + D3

] 1 0 0
0 1 0
0 0 1

col 1 ↔ col 3[

1 1
0 1

] [
D 1 + D + D3 1 + D + D3

1 + D2 + D3 1 + D + D3 0

] 0 0 1
0 1 0
1 0 0

D2· row 1 + row 2 → row 2[

1 1

D2 1 + D2

] [
D 1 + D + D3 1 + D + D3

1 + D2 (1 + D2)(1 + D + D3) D2(1 + D + D3)

] 0 0 1
0 1 0
1 0 0

D· row 1 + row 2 → row 2[

1 1

D + D2 1 + D + D2

] [
D 1 + D + D3 1 + D + D3

1 + D2 (1 + D + D2)(1 + D + D3) (D + D2)(1 + D + D3)

] 0 0 1
0 1 0
1 0 0

row 1 ↔ row 2[

D + D2 1 + D + D2

1 1

] [
1 + D2 (1 + D + D2)(1 + D + D3) (D + D2)(1 + D + D3)

D 1 + D + D3 1 + D + D3

] 0 0 1
0 1 0
1 0 0

D· row 1 + row 2 → row 2

[
D + D2 1 + D + D2

1 + D2 + D3 1 + D + D2 + D3

] 1

(1+D+D2)·
(1 + D + D3)

(D+D2)·
(1 + D + D3)

0

(1+D+D2+D3)·
(1 + D + D3)

(1+D2+D3)·
(1 + D + D3)

 0 0 1

0 1 0
1 0 0

(1 + D + D2) · (1 + D + D3)· col 1 + col 2 → col 2

[
D + D2 1 + D + D2

1 + D2 + D3 1 + D + D2 + D3

] 1 0

(D+D2)·
(1 + D + D3)

0

(1+D+D2+D3)·
(1 + D + D3)

(1+D2+D3)·
(1 + D + D3)

0 0 1
0 1 0

1

(1+D+D2)·
(1 + D + D3) 0

(1 + D + D2) · (1 + D + D3)· col 1 + col 2 → col 2

[
D + D2 1 + D + D2

1 + D2 + D3 1 + D + D2 + D3

] 1 0

(D+D2)·
(1 + D + D3)

0

(1+D+D2+D3)·
(1 + D + D3)

(1+D2+D3)·
(1 + D + D3)

0 0 1
0 1 0

1

(1+D+D2)·
(1 + D + D3)

(D+D2)·
1 + D + D3)

col 2 + col 3 → col 3[

D + D2 1 + D + D2

1 + D2 + D3 1 + D + D2 + D3

] 1 0 0

0

(1+D+D2+D3)·
(1 + D + D3)

(1+D2+D3)·
(1 + D + D3)

0 0 1
0 1 1

1

(1+D+D2)·
(1 + D + D3) 1 + D + D3

col 2 + D2· col 3 → col 2[

D + D2 1 + D + D2

1 + D2 + D3 1 + D + D2 + D3

] 1 0 0

0

(1+D+D2)·
(1 + D + D3)

(D)·
(1 + D + D3)

0 D2 1

0 1 + D2 1

1

(1+D)·
(1 + D + D3) 1 + D + D3

col 2 + D· col 3 → col 2[

D + D2 1 + D + D2

1 + D2 + D3 1 + D + D2 + D3

] 1 0 0

0

(1+D)·
(1 + D + D3)

(D)·
(1 + D + D3)

 0 D + D2 1

0 1 + D + D2 1

1 1 + D + D3 1 + D + D3

col 2 + col 3 → col 2[

D + D2 1 + D + D2

1 + D2 + D3 1 + D + D2 + D3

] [
1 0 0

0 1 + D + D3 D · (1 + D + D3)

] 0 1 + D + D2 1

0 D + D2 1

1 0 1 + D + D3

D·col 2 + col 3 → col 2[

D + D2 1 + D + D2

1 + D2 + D3 1 + D + D2 + D3

] [
1 0 0

0 1 + D + D3 0

] 0 1 + D + D2 1 + D + D2 + D3

0 D + D2 1 + D2 + D3

1 0 1 + D + D3

The matrix A−1 yields through its inversion

A =

[
1 + D + D2 + D3 1 + D + D2

1 + D2 + D3 S + D2

]
. (B.407)

The matrix B−1 yields through its inversion

B =

 (D + D2) · (1 + D + D3) (1 + D + D2) · (1 + D + D3) 1

1 + D2 + D3 1 + D + D2 + D3 0

D + D2 1 + D + D2 0

 =

 D + D3 + D4 + D5 1 + D4 + D5 1

1 + D2 + D3 1 + D + D2 + D3 0

D + D2 1 + D + D2 0

 .

(B.408)

The basic encoder is in the upper two rows of B, so

Gbase(D) =

[
D +D3 +D4 +D5 1 +D4 +D5 1

1 +D2 +D3 1 +D +D2 +D3 0

]
(B.409)

The first format of (B.408) easily allows verification that the basic encoder is orthogonal to
the original parity matrix H(D). However, Gbase(D)’s straightforward implementation has

587

256 states instead of the 8 of Gsys(D) (only the last output v1(D) needs delay elements (3
of them).

Thus the minimization procedure follows:

A−1
min,i Gbase[
1 0
0 1

] [
D + D3 + D4 + D5 1 + D4 + D5 1

1 + D2 + D3 1 + D + D2 + D3 0

]
multiply rows by D−5 and D−3[

D−5 0
0 D−3

] [
D−4 + D−2 + D−1 + 1 D−5 + D−1 + 1 D−5

D−3 + D−1 + 1 D−3 + D−2 + D−1 + 1 0

]
add row1 to row 2 → row 1[

1 1
0 1

] [
D−4 + D−3 + D−2 D−5 + D−3 + D−2 D−5

D−3 + D−1 + 1 D−3 + D−2 + D−1 + 1 0

]
multiply rows by D5 and D3[

D5 0
0 D3

] [
D + D2 + D3 1 + D2 + D3 1
1 + D2 + D3 1 + D + D2 + D3 0

]
multiply rows by D−3 and D−3[

D−3 0
0 D−3

] [
D−2 + D−1 + 1 D−3 + D−1 + 1 D−3

D−3 + D−2 + 1 D−3 + D−2 + D−1 + 1 0

]
add row1 to row 2 → row 2[

1 0
1 1

] [
D−2 + D−1 + 1 D−3 + D−1 + 1 D−3

D−3 + D−1 D−2 D−3

]
multiply rows by D5 and D3[

D3 0
0 D3

] [
D + D2 + D3 1 + D2 + D3 1

1 + D D 1

]
multiply rows by D−3 and D−1[

D−3 0
0 D−1

] [
D−2 + D−1 + 1 D−3 + D−1 + 1 D−3

D−1 + 1 1 D−1

]
add row1 to row 2 → row 1[

1 1
0 1

] [
D−2 D−3 + 1 D−3 + D−1

D−1 + 1 1 D−1

]
multiply rows by D3 and D[

D3 0
0 D

] [
D 1 + D2 1 + D2

1 + D D 1

]

The

minimal encoder now has 8 states, the minimum complexity.

Gmin(D) =

[
D 1 +D2 1 +D2

1 +D D 1

]
. (B.410)

With some algebra, Gmin(D) ·Ht(D) = 0.

588

There are 3 reduction steps (each with 3 matrix multiplies ofGbasic(D) above with operations:

Amin,1 =

[
D5 0
0 D3

]
·
[

1 1
0 1

]
·
[
D−5 0

0 D−3

]
=

[
1 D2

0 1

]
Amin,2 =

[
D3 0
0 D3

]
·
[

1 0
1 1

]
·
[
D−3 0

0 D−3

]
=

[
1 0
0 1

]
Amin,3 =

[
D3 0
0 D

]
·
[

1 1
0 1

]
·
[
D−3 0

0 D−1

]
=

[
1 D2

0 1

]
Amin,3 ·Amin,2 ·Amin,1 =

[
1 0
0 0

]
(B.411)

Amin = I . (B.412)

In this case, the reduction operation did not change input bit-mappings, but this need not
be true in general. Further, the the original encoder is

G(D) = A · Γ ·Amin ·Gmin(D) = A · Γ ·Gmin(D) (B.413)

=

[
1 + D + D2 + D3 1 + D + D2

1 + D2 + D3 D + D2

]
·
[

1 0 0
0 1 + D + D3 0

]
·
[

D 1 + D2 1 + D2

1 + D D 1

]
.

The MLSD decoder that accepts a channel output and decoders for the input to Gmin(D)
produces ûmin(D). This input sequence can be applied to the encoder Gmin(D) to generate

v̂min(D) = û(D) ·Gmin(D) . (B.414)

Then the inputs desired to the original systematic encoder Gsys(D), which very impor-
tantly necessarily was the transmitter’s encoder for this to work, will be then

ûsys,2 = v̂3(D) = v̂min,3(D)

ûsys,1 = v̂2(D) = v̂min,2(D) . (B.415)

This exploits that systematic encoders (if, again, actually used) cannot be catastrophic.
Since Gmin(D) is not catastropic, then its MLSD decoder output will have finite input errors
if there are finite output channel errors. Further, the generation of v̂(D) is feedback-free
using Gmin(D), so finite input errors lead to finite output errors. The overall system is non-
catastrophic. This method allows Viterbi decoder programs (many of which are available
publicly but when fed with a systematic feedback encoder for the program to know what
structure to decode will increase significantly the number of states they use internally) to be
used. While these increased-state programs eventually lead to the same decoded message, it
is highly inefficient on programs that already have high run time. Using the same program
with Gmin(D) and the process immediately preceding in (B.414) and (B.415) can lead to
several orders of magnitude faster run time to get the same result7.

7At time of writing, the author is not aware of any fixes to the online programs - multiple languages apparently - that
all have this unnecessary feedback MLSD complexity increase. The fix does involve finding the minimal encoder one way or
another, which as is evident in the table above for a simple r = 2/3 encoder was one-design-time significant effort in finite
field algebra. A program to fix this awaits a motivated student’s interest. Warining: the matlab program smithnorm.m
does not appear to accept finite-field inputs, only complex transfer functions. Note that the online programs work with
minimum complexity only if the code is rate r = 1/n.

589

Bibliography

[1] John T. Gill, III. “Stanford EE387 Class Lecture Book”.

[2] Lasha Ephremidze. “An Elementary Proof of the Ploynomial Matrix Spectral Factorization
Theorem”. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, DOI:
https://doi.org/10.1017/S0308210512001552Published online by Cambridge University Press: 24
July 2014. AMS Subject Classification (2010): 47A68.

590

Index

invariant factor, 574
invariant factors, 569

591

1

2

3

4

5

6

7

8

592

	cardinalFinite Fields and Coset Codes
	cardinalFinite Field Algebra
	cardinalGroups, Rings, and Fields
	cardinalGalois Fields
	cardinalConjugates

	cardinalLattices
	cardinalElementary Lattice Operations
	cardinalBinary Lattices and Codes
	cardinalAssociation of lattices with binary codes
	cardinalOne-dimensional partitioning of binary lattices
	cardinalTwo-dimensional partitioning of binary lattices:
	cardinalFour-dimensional parititioning of binary lattices
	cardinalEight-dimensional parititioning of binary lattices:

	cardinal16, 24, and 32 dimensional partitioning chains

	Coset Codes, Lattices, and Partitions
	Gain of Coset Codes
	Mapping By Set Partitioning
	Partitioning of the Integer Lattice
	Partition Trees and Towers

	One- and Two-dimensional Trellis Codes
	Rate 1/2 Code
	A simple rate 2/3 Trellis Code
	Code Design in One and Two Dimensions
	One-Dimensional Trellis Codes
	Two-Dimensional Codes
	Phase-Shift Keying Codes
	Design Examples
	Decision-Feedback Sequence Estimation

	Decoder Complexity Measures

	Multidimensional Trellis Codes
	Lattice Codes and Multidimensional Partitioning
	Rectangular Lattice Family
	Simple Lattice Constructions:

	D - Lattice Family
	 The DE8 Lattice
	The Gosset (E8) Lattice
	4 and 8 Dimensional Partition Chains

	Multidimensional Trellis Codes
	Multidimensional Trellis Code Examples
	4D Code Table
	8D Code Table

	cardinalTheory of the Coset Code Implementation
	Encoder Simplification
	4D Encoder with rate 2/3, and Z4/R4D4
	8D Encoder with rate 3/4, and Z8/E8

	Decoder Complexity
	Decoding the D4 Lattice

	Decoding the Gossett (E8) Lattice
	Lattice Decoding Table

	cardinalVarious Results in Encoder Realization Theory
	cardinalInvariant Factors Decomposition
	cardinalThe IFD Algorithm:
	cardinalIFD Observations:

	cardinalCanonical Realizations of Convolutional Encoders
	cardinalInvariant Factors
	cardinalExtended Invariant Factors
	cardinalScrambler Interpretation of the Invariant Factors Decomposition of G

	cardinalTests for a Noncatastrophic Code:
	cardinalMinimal Encoders
	cardinalBasic Encoders
	cardinalConstruction of Minimal Encoders
	cardinalCanonical Systematic Realization

	Bibliography
	Index

